Issuu on Google+

PREDIMENSIONADO DE PÓRTICOS Requisitos básicos Toda edificación y cada una de sus partes deberán tener la resistencia, la rigidez y la estabilidad necesarias para comportarse satisfactoriamente y con seguridad para los estados límites que puedan presentarse durante su vida útil. En consecuencia, el proyecto arquitectónico deberá permitir una estructuración eficiente para resistir las acciones que puedan afectar a la edificación, con particular atención a las acciones sísmicas. Los métodos de diseño serán los establecidos en las normas COVENIN-MINDUR vigentes.

Criterio de seguridad Las normas vigentes tanto en concreto armado como en acero están basadas en los estados límites, las condiciones de seguridad implican que la resistencia será menor o igual que la resistencia de diseño. Se define como "estado límite" la situación más allá de la cual una estructura, miembro a componente estructural queda inútil para su uso previsto. En estas Normas se consideran los siguientes estados: Estado límite de agotamiento: Se alcanza este estado cuando se agota la resistencia de la estructura o de alguno de sus miembros. Estado límite de servicio: Se alcanza este estado cuando las deformaciones, vibraciones, agrietamiento, o deterioros afectan el funcionamiento previsto de la estructura pero no su capacidad resistente. Estado límite de tenacidad: Se alcanza este estado cuando la disipación de energía es incapaz de mantener un comportamiento histerético estable. Estado límite de estabilidad: Se alcanza este estado cuando el comportamiento de la estructura o una parte importante de ella se afecta significativamente ante nuevos incrementos de las acciones y que podrían conducirla al colapso o desplome.

Acciones mínimas Las acciones definidas en la Norma COVENIN 2002-88, son las mínimas de utilización o servicio aplicables, tanto en la Teoría de los Estados Límites, según lo establecen las normas vigentes para el proyecto de edificaciones de concreto, acero, madera, mampostería y de cualquier otro material estructural. Las acciones debidas a los sismos o al viento se establecen en las respectivas normas COVENIN-MINDUR: la 1756-80, "Edificaciones Antisísmicas", y la 2003-86, "Acciones del Viento sobre las Construcciones".

Clasificación y definición de las acciones de cargas Las acciones son los fenómenos que producen cambios en el estado de tensiones y deformaciones en los elementos de una edificación y se clasifican en permanentes, variables, accidentales, y extraordinarias. Acciones permanentes: Son las que actúan continuamente sobre la edificación y cuya magnitud puede considerarse invariable en el tiempo, como el peso propio de la estructura y todos los materiales constructivos soportados por ella en forma permanente. Acciones variables: Son aquéllas que actúan sobre la edificación con una magnitud variable en el tiempo y que se deben a su ocupación y uso habitual.

Facultad de Arquitectura y Diseño Universidad de Los Andes, Venezuela

Sistemas Estructurales 20 Prof. Jorge O. Medina


Acciones accidentales: Son las acciones que en la vida útil de la edificación tienen una pequeña probabilidad de ocurrencia sólo durante lapsos breves de tiempo, como las acciones debidas al sismo, al viento, etc. Acciones extraordinarias: Son las acciones que normalmente no se consideran entre las que actúan en la vida útil de una edificación y que, sin embargo, pueden presentarse en casos excepcionales y causar catástrofes, como las acciones debidas a explosiones, incendios, etc.

Combinaciones de acciones Las cargas pueden actuar en diferentes combinaciones, por lo que las fundaciones, la estructura y todos sus componentes, deberán diseñarse para la envolvente de las solicitaciones que produzcan los efectos más desfavorables en la edificación. Las combinaciones a ejecutarse son las siguientes: 1. Acciones permanentes; 2. Acciones permanentes y acciones variables 3. Acciones permanentes y acciones accidentales 4. Acciones permanentes y acciones variables conjuntamente con acciones accidentales.

Combinaciones de acciones para el diseño por estado límite de agotamiento para estructuras de concreto armado U = 1.4 (CP + CF) U = 1.2 ( CP +CF + CT ) + 1.6 (CV + CE) + 0.5 CVt U = 1.2 CP + 1.6 CVt + ( γCV o ± 0.8 W) U = 1.2 CP + 1.6 W + 0.5 CV + CVt U = 1.2 CP + γ CV ± S U = 0.9 CP ± 1.6 W + 1.6 CE U = 0.9 CP ± S + 1.6 CE CE → Acciones o solicitaciones debidas al empuje de tierras u otros materiales, incluyendo la acción del agua contenida en los mismos. CF → Acciones o solicitaciones debidas al peso y a la presión de fluidos con densidades bien definidas y alturas máximas controlables. CFU → Acciones o solicitaciones debidas a inundaciones. CP → Acciones o solicitaciones debidas a las cargas permanentes. CT → Acciones o solicitaciones debidas a cambios de temperatura, fenómenos reológicos como la fluencia y la retracción de fraguado, y asentamientos diferenciales. CV → Acciones o solicitaciones debidas a las cargas variables. CVt → Acciones o solicitaciones debidas a las cargas variables en techos y cubiertas. S → Acciones debidas al sismo W → Acciones debidas al viento (COVENIN 1753-2003)

Combinaciones de acciones para el diseño por estado límite de agotamiento para estructuras de acero U = 1.4 CP U = 1.2 CP + 1.6 CV + 0.5 CVt U = 1.2 CP + 1.6 CVt + (0.5CV o ± 0.8 W) U = 1.2 CP + 1.3 W + 0.5 CV + 0.5 CVt U = 0.9 CP ± 1.3 W

Facultad de Arquitectura y Diseño Universidad de Los Andes, Venezuela

Sistemas Estructurales 20 Prof. Jorge O. Medina


U = 1.2 CP + γ CV ± S U = 0.9 CP ± S (COVENIN 1618-1998)

Determinación de las acciones permanentes Se usarán los pesos reales de los materiales y elementos constructivos. En ausencia de una información más precisa se pueden adoptar los valores de las tablas.

Determinación de las acciones variables Para entrepisos cuyas cargas variables sean debidas a personas u objetos, se estimarán las cargas máximas que deben soportar los entrepisos, las cuales no serán menores a las indicadas en las tablas. Se deberá tomar considerar de forma adicional los efectos de las vibraciones y fuerzas de impacto importante originadas por ascensores, montacargas, maquinarias y grúas móviles, según los datos de los fabricantes, y en ausencia de ellos se tomarán los valores siguientes: Ascensores y montacargas : deben incrementarse en un 100%. Maquinarias Livianas Alternantes Conexiones que soportan cargas suspendidas

20% 50% 33%

Determinación de las acciones del sismo Son las acciones producidas por movimientos del terreno originados por los sismos. Habitualmente, las acciones del sismo se dan mediante sus espectros como lo indican las Normas COVENIN-MINDUR 1756.

Determinación de las acciones del viento Son las acciones producidas por el aire en movimiento sobre los objetos que se le interponen y consisten principalmente, en empujes y succiones. Los valores de diseño se indican en las Normas COVENIN - MINDUR 2003.

Determinación de acciones reológicas y térmicas Son las acciones debidas a los fenómenos reológicos como la retracción, la fluencia, los cambios de temperatura, y también los cambios de humedad. En el Comentario se recomiendan valores de temperatura y humedad aplicables al proyecto de edificaciones.

Determinación de las acciones extraordinarias Las acciones extraordinarias son las que normalmente no se consideran entre las que actúan en la vida útil de una edificación y que, sin embargo, pueden presentarse en casos excepcionales y causar catástrofes, como las acciones debidas a explosiones, incendios, etc. No será necesario incluirlas en el proyecto, sino únicamente tomar las precauciones en la estructuración y en los detalles constructivos.

Facultad de Arquitectura y Diseño Universidad de Los Andes, Venezuela

Sistemas Estructurales 20 Prof. Jorge O. Medina


Requisitos arquitectónicos Separación de construcciones vecinas Las separaciones que deben dejarse en los linderos y las juntas de construcción entre cuerpos distintos de una misma construcción se indicarán en los planos arquitectónicos. Estos espacios deberán quedar libres de toda obstrucción.

Acabados y recubrimientos Los acabados y recubrimientos cuyo desprendimiento pueda ocasionar daños a los ocupantes de la edificación o a las que transiten en sus alrededores deberán disponer de un sistema de fijación debidamente calculados y ejecutados. Particular atención deberá prestarse a los recubrimientos pétreos en fachadas y escaleras, a las fachadas prefabricadas de concreto, a las fachadas con cristales de seguridad, así como a los cielorrasos de elementos prefabricadas de yeso u otros materiales pesados.

Elementos no estructurales Los elementos no estructurales que puedan restringir las deformaciones de la estructura o que tengan un peso considerable, deberán ser aprobados en sus características y en su forma de fijación por el Ingeniero estructural responsable del proyecto. El mobiliario, los equipos y otros elementos cuyo vuelco o desprendimiento pueda ocasionar daños físicos o materiales, deben fijarse de manera que eviten estos daños.

Instalaciones y ductos Las perforaciones o alteraciones significativas en un miembro o elemento estructural para alojar ductos o instalaciones deberán ser aprobadas por el Ingeniero estructural responsable del proyecto, quien proporcionará planos de detalle que indiquen las modificaciones y refuerzos locales necesarios. No se permitirá que las instalaciones de agua, gas y drenaje crucen juntas de construcción a menos que se provean conexiones o tramos flexibles. (COVENIN 2002-88)

Métodos aproximados de análisis estructural Es conveniente estimar las dimensiones de los elementos estructurales, para conocer las consecuencias que tienen las dimensiones en la distribución de los espacios, poseer un estimado de los costos de construcción y conocer si el planteamiento del sistema estructural es adecuado. La estimación de las dimensiones se puede realizar por el método del área tributaria (Arnal y Epelboim, 1985).

Método del área tributaria Vigas Las cargas sobre las losas se reparten a las vigas según el ancho tributario que es el promedio de la separación de las vigas (véase Figura 1). Las cargas a emplear sobre la losa se obtienen según las indicaciones de las especificaciones COVENIN y los momentos que producen las cargas en las vigas se pueden obtener por lo que se indica en la resolución aproximada de pórticos.

Facultad de Arquitectura y Diseño Universidad de Los Andes, Venezuela

Sistemas Estructurales 20 Prof. Jorge O. Medina


Figura 1. Ancho tributario en vigas (Arnal y Epelboim, 1985, p.662).

qu = wub Donde:

(Ec. 1)

qu ≡ carga mayorada sobre la viga en unidades de fuerza/distancia; wu ≡ carga mayorada que actúa sobre la losa en unidades de fuerza/área; b ≡ ancho tributario de la viga.

Columnas La carga axial que actúa en la columna se obtiene por el área tributaria que se apoya directamente sobre la columna y se obtiene por rectas trazadas en la mitad de la distancia que las separa.

Pu = wu At N Donde:

(Ec.2)

Pu ≡ Carga axial mayorada sobre la columna; At ≡ Area tributaria; N ≡ Numero de pisos por encima del piso considerado.

Facultad de Arquitectura y Diseño Universidad de Los Andes, Venezuela

Sistemas Estructurales 20 Prof. Jorge O. Medina


Figura 2. Area tributaria sobre la columna (Arnal y Epelboim, 1985, p.664).

Resolución de pórticos Estructuras de concreto armado Todos los miembros de pórticos u otras estructuras continuas se proyectarán para resistir los efectos máximos de las acciones mayoradas, determinados mediante un análisis estructural elástico. Como simplificación se pueden utilizar métodos aproximados de análisis de pórticos para edificaciones con luces y altura de entrepisos convencionales. Tabla 1. Momentos flectores aproximados para columnas Columnas Exteriores Momento base de columna superior

M c1

M c2

M c3

Donde:

M c4

K c1

Mv

K c2

K c1 + K c 2 + K v K c2

Mv

K c3 K c 3 + K c 4 + K v1 + K v 2

Momento tope de columna inferior

Pórtico de mas de 2 tramos

K c1 + K c 2 + 0 ,5 K v

Columnas Interiores Momento base de columna superior

K c1 K c1 + K c2 + 0,5K v

Momento tope de columna inferior

Pórtico de 1 tramo

K c4 K c 3 + K c 4 + K v1 + K v 2

K c1 + K c 2 + K v

Mv Mv

ΔM v

ΔM v

Kc1 = Rigidez de la columna superior. Kc2 = Rigidez de la columna inferior. Kv = Rigidez de la viga. Kv1, Kv2 = Rigideces de las vigas a uno y otro lado de la columna

K =

4I L

ΔMv = Máxima diferencia entre los momentos en los extremos de las dos vigas que inciden en la columna por sus caras opuestas, con los otros extremos rígidamente empotrados, suponiendo una de las vigas cargadas y la otra no. (Covenin 1753-2003)

Facultad de Arquitectura y Diseño Universidad de Los Andes, Venezuela

Sistemas Estructurales 20 Prof. Jorge O. Medina


En el diseño de vigas y losas continuas, en lugar de métodos más exactos de análisis de pórticos, se pueden emplear los valores aproximados de momentos flectores y fuerzas de corte que se detallan en la Tabla 8.10, siempre que se satisfagan las siguientes condiciones: a)

El número de tramo es de dos o más;

b) Las luces Ln son aproximadamente iguales sin que la luz mayor de dos tramos adyacentes exceda en más del 20% a la menor de ellas; c)

Las cargas qu son las más desfavorables de todas las combinaciones y están uniformemente distribuidas;

d) La carga unitaria variable no excede tres veces la carga unitaria permanente. e)

Los miembros son prismáticos.

Tabla 2. Momentos flectores y fuerza de corte aproximados para vigas y losas continuas Momento positivo Tramo extremos: Apoyo exterior articulado o empotrado en vigas perimetrales

qu L2n 11

Apoyo exterior mediante empotramiento en columna o muro

qu L2n 14

Tramos interiores

qu L2n 16

Momento negativo en la cara exterior del primer apoyo interior: Dos tramos

qu L2n 9

Más de dos tramos

qu L2n 10

Momento negativo en las demás caras de apoyo interiores

qu L2n 11

Momento negativo en las caras interiores de los apoyos extremos para miembros construidos monolíticamente con sus apoyos: Cuando el apoyo es una columna

qu L2n 16

Cuando el apoyo es una viga perimetral

qu L2n 24

Momento negativo en las caras de los apoyos para losas con luces no mayores de 3m y vigas cuya rigidez sea inferior al octavo de la suma de las rigideces de las columnas en cada extremo del tramo. Véase Artículo 8.6 Fuerza cortante en miembros extremos en la cara del primer apoyo interior

qu L2n 12

Fuerza cortante en las caras de todos los demás apoyos

Donde:

1,15qu Ln 2 qu Ln 2

qU = Carga mayorada por unidad de longitud de viga.

La luz que se utiliza en el cálculo de los momentos negativos debe ser el promedio de las luces adyacentes. Cuando se utilizan los coeficientes de la Tabla 8.10 no se permite la redistribución de momentos indicada en el Artículo 8.4;. las demás fuerzas internas deben calcularse de acuerdo con los dichos momentos. (COVENIN 1753-2003) Estructuras de acero Los momentos aproximados para las vigas de acero se diseñaran con los momentos correspondientes a una 2

viga simplemente apoyada, para estructuras continuas el momento de cálculo es wl 10 mas el ocasionado por las cargas laterales determinado por el método del portal. Asimismo, si la viga está rígidamente conectada a la columna pueden dimensionarse con un factor de 0.9 veces los momentos negativos producidos por las cargas verticales, siempre y cuando que para tales miembros el máximo momento positivo se incremente en 0.1 del valor promedio de los momentos negativos, debido a la redistribución de momentos producto de las juntas plásticas generadas en la condición de agotamiento de la resistencia. Esto no se aplicará a los momentos producidos por cargas sobre volados ni a las vigas híbridas y miembros de acero A514. Si el momento negativo es resistido por una columna rígidamente conectada a la viga, la reducción de 0.1 puede utilizarse en el diseño de Facultad de Arquitectura y Diseño Universidad de Los Andes, Venezuela

Sistemas Estructurales 20 Prof. Jorge O. Medina


la columna en flexocompresión, siempre que la fuerza normal no exceda de øc0.15AFy. De esta manera el predimensionado de vigas continuas de acero puede realizarse con un momento de

wu l 2 11 (COVENIN 1618-

98; McCormac, 1996 )

Muros Estructurales Aplicación Cuando es posible la aplicación de considerables cargas horizontales como las que genera un sismo, se utilizan muros estructurales de concreto reforzado (también llamados muros de cortante). Los muros de concreto que encierran las escaleras y los núcleos del ascensor también pueden servir como muros de cortante.

Comportamiento La sección transversal estrecha (es decir, ancho pequeño) indica que puede plantearse el problema de la inestabilidad del borde a comprensión. Por lo general las losas del piso de un edificio de niveles múltiples, actúan dan apoyo lateral; en consecuencia se puede considerar que la longitud crítica respecto al pandeo es igual a la altura de los pisos. El muro cortante, estará sujeto a momentos flexionantes y fuerzas cortante, por lo que se puede evaluar la resistencia de la sección crítica a través del muro de la relación de interacción momento - fuerzas axial. Los muros resisten en planos paralelos a la fuerza y no resiste las fuerzas perpendiculares a su plano, por ello hay que colocarlos en direcciones perpendiculares. Además es esencial tener fundaciones adecuadas que dan fijación total a la base y suficiente conexión de los muros cortantes a cada piso para trasmitir la carga horizontal. (Ambrose, 1998; Park & Paulay, 1983)

Figura 3. Distribución de los muros en planta.

Dimensiones más empleadas Los largos están comprendidos entre 2 y 8 m con espesores de 15, 20 y 25 cm que son las más empleadas.(Arnal y Epelboim, 1985)

Secciones transversales típicas

Figura 4. Secciones transversales típicas de los muros.

Facultad de Arquitectura y Diseño Universidad de Los Andes, Venezuela

Sistemas Estructurales 20 Prof. Jorge O. Medina


Muros con alas Las alas incrementan considerablemente el momento de resistencia de muros altos en voladizo de cortante. Por tanto la resistencia de las fuerzas cortante en le alma puede ser más crítica que en los muros que tengan secciones transversales rectangulares.

Figura 5. Muro con alas.

Muros de cortante con aberturas Las ventanas, puertas y ductos de servicios requieren que los muros interiores o exteriores de cortante tengan aberturas. Para asegurar una estructura racional, es importante que se tomen las decisiones sensatas en las primeras etapas de planificación con respecto a la ubicación de las aberturas en toda la construcción. (Una “estructura racional de muros de cortante” es tal que su comportamiento esencial se puede evaluar por inspección simple.) Por lo general, las estructuras irracionales de muros de cortante desafían la solución mediante análisis estructural normal. En tales casos las investigaciones de modelos o estudios de elementos finitos pueden ayudar a evaluar las fuerzas internas. Sólo los estudios especiales experimentales pueden revelar los aspectos importantes de la resistencia máxima, absorción de energía y demanda de ductilidad en los muros de cortante irracionales de concreto reforzado Es imperativo que las aberturas interfieran lo menos posible con la capacidad de momentos y transmisión de cortante de la estructura. (En la fig., 12,17 se muestra un buen ejemplo de muro irracional de cortante). La distribución escalonada de las aberturas reduce severamente el área de contacto entre los dos muros, donde se deberían trasmitir las fuerzas a cortante.

Facultad de Arquitectura y Diseño Universidad de Los Andes, Venezuela

Sistemas Estructurales 20 Prof. Jorge O. Medina


Figura 6. Muros con aberturas.

Las observaciones realizadas sobre el comportamiento probable de los muros de cortante durante las perturbaciones sísmicas indican lo indeseado de reemplazar muros masivos cerca de su base con miembros de columnas más ligeras. Para estas cargas, se puede concentrar la absorción de energía en el intervalo inelástico en unas cuantas ramas relativamente ligeras. Un ejemplo del comportamiento estructural insatisfactorio se observó en el hotel Macuto-Sheraton de Venezuela. (Park y Paulay, 1983)

Localización de los muros Muros individuales pueden estar sujetos a desplazamientos axiales, traslacionales y torsionales. Para saber cual muro contribuirá a la resistencia del volcamiento, fuerzas de corte y torsión de piso depende de su configuración geométrica, orientación y localización dentro del plano del edificio. En colaboración con el arquitecto el ingeniero estructural debe estar en posición de sugerir la localización más deseable de los muros para optimizar la respuesta sísmica. La principal consideración debe ser la simetría de las rigideces, la estabilidad torsional y la capacidad disponible de volcamiento de la fundación. También es deseable que la deformación inelástica se distribuya razonablemente uniforme. Para escoger la mejor ubicación de los muros estructurales se requiere un planteamiento cuidadoso para evitar fuertes torsiones, por lo que debe realizar lo siguiente: −

Hacer una distribución regular de los muros, estableciendo simetría preferente.

Procurar que los centros de masas y rigideces deben estar los más cerca posibles.

Para mejor resistencia torsional se deben colocar en la periferia de la planta.

Facultad de Arquitectura y Diseño Universidad de Los Andes, Venezuela

Sistemas Estructurales 20 Prof. Jorge O. Medina


En edificios de muchos pisos sobre zonas de alto riesgo sísmico, una concentración de toda la fuerza lateral en solamente uno o dos muros implica introducir grandes fuerzas a las fundaciones, por lo que se requiere una fundación muy grande.

En edificios de altura media, la sección transversal no deben variar con la altura. En dado caso se puede reducir el espesor del muro.

Las plantas deben coincidir de un nivel al otro.

Los grandes muros tienden a limitar la flexibilidad en la distribución de los espacios internos, por lo que se recomienda en edificios de oficina, colocar las pantallas limitando las áreas de circulación vertical y de servicios.

Los sistemas de fachada resistente, si bien condicionan bastante el aspecto externo del edificio, facilitan mucho la organización del espacio interno. (Arnal y Epelboim, 1985; Paulay y Priestley, 1992)

Figura 7. Ubicación de muros en planta.

Concreto preeforzado Definición Un elemento de concreto preesforzado es aquel en que se introducen esfuerzos intensos de manera que contrarrestan hasta un grado deseado los esfuerzos producidos por las cargas. El preesfuerzo controla o elimina esfuerzos de tracción, siendo el de excentricidad variable es método más eficiente para este fin. El preesforzado se realiza por lo general de tres maneras: −

Mediante gatos sobre contrafuertes.

Mediante gatos unidos entre sí por los cables, de los cuales uno es fijo y en el otro se aplica toda la fuerza, luego se suelta y se acuña el cable al concreto.

Tensionando los cables con contrafuertes en un patio donde se vacía el concreto en encofrados y los cables se suelta solo cuando el concreto endurece, la precompresión se realiza por fricción y adherencia.

Facultad de Arquitectura y Diseño Universidad de Los Andes, Venezuela

Sistemas Estructurales 20 Prof. Jorge O. Medina


Fig gura 8. Formas dee pretensado.

Tiipos de prreesfuerzo o Pretensado

Los caables se tensann antes de vacciar el concreeto y cuando eel concreto en ndurece la fuerza se tensión deel cable se libbera para ser transferida aal concreto meediante la adhereencia entre el cable y el conncreto. Por loo general es tiipo se realiza del modo prefabricado.

Postensado

Los caables se instalan sin tensiónn, por lo geneeral en un duccto. Cuando ell concreto ha enddurecido se tennsan los cablees anclados enn un extremo; cunado se ha llegado a la tensión deseada, se anclan eestos cables y se inyectaa una lechadaa para la n in situ. adhereencia del cablee con el concrreto. Por lo genneral este tipoo se realiza en

Pre-Postensaado

Una parte de la fueerza total de tensión es realizada antes de vaciar enn concreto (pretennsado) y la otra se realliza después de haber enndurecido el concreto (postennsado)

Según la forrma de la seccción de la vigga el rango dee luces varia, las seccioness deben ser prreferiblementee asiméétricas, las seccciones en dobble T pueden llegar l hasta unna luz de 18,55 m; la secciónn T, I soporta hasta 36,5 m. m La lossa canal para luces intermedias y las viga cajón ventajjosa en puentees de luces inttermedias y laargas (Nilsonn, 1999)).

Ref ferenciass −

A Ambrose, J. (1998). Estructuuras. México, D.F., Méxicoo: Editorial LIMUSA, S.A. de C.V.

Arnal, E. y Epelboim A E S. (1985). Mannual para el proyecto dee estructuras de concreto armado paraa edificaciones. Caracas, Vennezuela: Funddación “Juan José Aguerreevere”, Fondoo Editorial del Colegio dee In ngenieros de Venezuela. V

Arnold, C. y Reitherman, A R R (1991). Mannual de configguración y diseño sísmico de edificios. México, D.F.., R. M México: Editorrial LIMUSA, S.A. de C.V.

Bazán, E. y M B Meli R. (2001)). Diseño sísm mico de edificcios. México D.F., Méxicoo: Editorial Liimusa S.A. dee C C.V.

COVENIN (19988). COVEN C NIN 2002-88 “Criterios “ y Acciones A Míniimas para el P Proyecto de Edificaciones” E ”. C Caracas, Venezzuela: Fondonnorma.

COVENIN (19998). COVEN C NIN 1618-98 “Estructuras de Acero parra Edificacionnes. Método de d los Estados L Límites”. Caraacas, Venezuella: Fondonorm ma.

COVENIN (20003). COVEN C NIN 1753-20003 “Proyecto y Construccción de Obrass en Concreto o Estructural””. C Caracas, Venezzuela: Fondonnorma.

Facultaad de Arquitecturaa y Diseño Universidad de Los Anddes, Venezuela

Sistemaas Estructurales 200 Proff. Jorge O. Medinna


McCormac, J. (1996). Diseño de estructuras de acero. Método LRFD. México D.F., México: Alfaomega Grupo Editor, S.A. de C.V.

Nilson, A. y Winter, G. (1994). Diseño de estructuras de concreto armado. Santafé de Bogota, Colombia: McGraw-Hill Interamericana S.A.

Nilson, A. (1999). Diseño de estructuras de concreto. Santafé de Bogota, Colombia: McGraw-Hill Interamericana S.A.

Park, R. y Paulay, T. (1983). Estructuras de concreto reforzado. México, D.F., México: Editorial LIMUSA, S.A.

Paulay, T., & Priestley M. (1992). Seismic design of reinforced concrete and masonry buildings. s/d: John Wiley and Sons, INC

Facultad de Arquitectura y Diseño Universidad de Los Andes, Venezuela

Sistemas Estructurales 20 Prof. Jorge O. Medina


predi_portico