Issuu on Google+

LOGBOOK     Brigitte  Danks  

 


eLearning  and  Reading  Modules   Week  1   Readings:  2.08  –  2.11  Ching  

 


eLearning  

 


Week  2   Readings:  2.02  –  2.04  Ching  

 


eLearning  

 


Week  3  

 


Week  4  

 


Week  5  

 


Week  6  

 


Week  7  

 


Week  8  

 


Week  9    

 


WEEK  10  

 


Lectures   Week  1  

 


Week  2  

 

 


Week  3  

 


Week  4  

 


Week  5  

 


Week  6  

 


Studio  Reports   Week  1   Mass  Tower  Challenge:   The  challenge  for  this  week’s  tutorial  was  to  construct  a  tower  out  of  medium   density  fiberboard.  The  aim  was  to  make  the  tower  as  tall  as  possible,  and  to   view  the  effects  of  compression  and  tension.     (Hunt,  2003)The  Material  

Figure  1:  Medium  Density   Fiberboard  (Kronospan,  2014)  

Medium  density  fiberboard  (MDF)   has  the  following  characteristics:   -­‐ Dense   -­‐ Flat   -­‐ Stiff   -­‐ Dust  produced  when   producing  MDF  is  very   dangerous  (contains   formaldehyde)  (Design   Technology,  2014).   -­‐ Susceptible  to  fungi  growth   and  termites  (Wood  Solutions,   2012).    

    Figure  2  shows  the  tower  constructed  by  our  group.  The  tower  had  the  following   characteristics.  

Foundation:   It  was  important  to  have  a  flat  surface  to  build  the  tower   on,  to  ensure  a  strong  foundation.  We  chose  a  flat  section   of  the  carpet,  while  other  groups  used  the  surface  of  the   underside  of  a  table.   Figure  3  shows  the  shape  of  the  base  that  was  used.  This   allowed  us  to  build  directly  upwards  in  a  structurally   sound  manner.    

Figure  3:  Shape  of  base  


Layering  Method:      

Figure  4:  Running   bricklaying  

A  running  bricklaying   method  (Figure  4)  was   used  to  optimize   stability  and   structural  strength.      

The  pieces  did  not  have  a  2:1  length  to  width   ratio  and  therefore  did  not  stack  perfectly,   particularly  during  the  construction  of  the   roof.  This  resulted  in  some  pieces  being  placed   perpendicular  to  the  other  blocks  and   protruding  out  of  the  structure  (Figure  5).             Figure  5:   Protruding  block  

Beam:   Figure  6  shows  the  beam  we  constructed  using   Figure  2:  The  completed  tower.   three  blocks  and  three  rubber  bands.  One   Photographer:  Brydie  Singleton   rubber  band  was  placed  lengthways  combining   the  three  blocks,  and  two  were  placed  in  a   diagonal  fashion  across  the  width  of  the  blocks.   The  bulk  of  the  rubber  bands  created  an  uneven   surface  on  which  to  continue  the  bricklaying.   Figure  6:  The  Beam   This  made  the  area  above  the  doorway  slightly   arched  and  less  stable  than  the  other  walls  of     the  tower.     Roof:   Figure  7  shows  the  method  utilized  for  constructing  the   roof  of  the  tower.     The  structure  was  incrementally  shifted  inwards,  with   two  layers  stacked  at  each  stage.  This  was  done  to   increase  the  stability  of  the  structure  by  decreasing  the   rate  at  which  the  walls  shifted  inwards.       The  construction  method  used  was  successful  in  being   Figure  7:  Cross-­‐section  view  of   pyramid-­‐like  roof  structure   structurally  sound  enough  for  the  tower  to  remain   standing  without  additional  support.      


Demonstration  of  Compression  and  Tension   With  our  completed  towers,  we  did  two  activities  that  demonstrated  the  effect  of   compression  and  tension  on  the  strength  of  a  structure.     Firstly,  we  gradually  removed  pieces  of   the  tower,  as  one  would  in  a  game  of   Jenga  (Figure  8).  We  observed  that  the   tower  remained  standing  despite  the   Figure  1 8:  Compression   many  missing  pieces,  due  to   compression,  tension  and  load  paths.   and  tension  acting  on  a   block.     Each  block  in  the  tower  is  under  the  influence  of  both  

Figure  8 :  Sketch  of  standing   compression  and  tension  (Figure  18).  The  weight  of   wall  with  missing  blocks  

Figure  9 :  The  load  path   for  a  section  of  the  wall  

the  load  compresses  each  block  inward  toward  the   center  of  the  block,  and  the  tension  of  the  underside  of   the  blocks  allows  the  load  paths  to  travel  sideways  as   well  as  downwards  (Hunt,  2003).     Figure  9  shows  that  the  dead  load  of  the  structure  has   a  sound  load  path  to  the  ground.  The  tower  eventually   collapsed  because  the  levels  could  no  longer  support   the  downward  forces  of  the  compression  from  above.   That  is,  the  load  path  became  too  long  and  indirect.       It  is  generally  possible  to  remove  approximately  20%   of  a  tower  before  the  tower  collapses.    Our  tower   collapsed  after  approximately  only  10%  was  removed.   This  is  likely  to  be  due  to  the  fragility  of  the  beam  and   the  area  above  it.  

The  second  activity  demonstrated  the  effects   of  compression  on  the  strength  of  the  tower.   Applied  loads  were  stacked  on  top  of  a  tower   of  sound  structure,  as  shown  in  Figure  10.  Due   to  the  compression,  the  tower’s  strength   increased.  Small  objects  were  pelted  at  the   tower  and  had  comparably  little  effect.  As   certain  blocks  were  knocked  out  of  the  tower   (as  in  the  first  activity),  approximately  30%  of   the  blocks  were  removed.   Evidently,  the  added  compression  increased   the  structural  strength  of  the  tower  and   enabled  it  to  withstand  more  damage.  

Figure  1 0:  A  tower  with  objects   stacked  on  top  


Week  2   The  challenge  for  this  week’s  studio  was  to  construct  the  tallest  possible  tower   using  only  one  piece  of  balsa  wood  and  any  adhesive  materials  desired.   Materials  Used:   -­‐ One  piece  of  balsa  wood  (600mm  x  100mm)   -­‐ Hot  glue  gun  and  glue   -­‐ Masking  Tape   -­‐ Cutting  board   -­‐ Blade   -­‐     To  acquire  as  many  strips  as  possible  while  still   maintaining  a  certain  degree  of  rigidity,  we  cut   strips  of  balsa  wood  approximately  2mm  wide,   as  shown  in  Figure  11.  Some  errors  were  made   resulting  in  a  few  shorter  strips,  were  used  for   the  triangles  at  each  level.     Figure  12  shows  the  planned   structure  for  the  tower.  It   consisted  of  three  shorter  pieces   of  equal  length  of  balsa  wood,   combined  to  form  a  triangle,  with   Figure  11:  The  equipment   three  full-­‐length    (600mm)  pieces   used  to  cut  the  balsa  wood   standing  upright,  joining  another   slightly  smaller  triangle.  Triangles   were  chosen  instead  of  squares  as   they  had  greater  material   efficiency.  

Figure  1 3:  Additional   structural  support  

Some  sections  required   additional  support  because  of   inaccuracies  in  the  cutting  of   the  balsa  wood.  For  these   segments  a  strip  was  placed   diagonally  across  the   rectangle  (Figure  13),  acting   as  a  brace.  Figure  14  shows   the  application  of  this  method.  

Figure  1 2:  The   planned  structure  

Figure  15  is  a  sketch  of   one  of  the  joints.  We  used   a  hot  glue  gun  to  connect   the  strips.  It  was  effective   as  it  was  a  strong  adhesive   and  dried  quickly.   Figure  1 4:  The  structure   of  the  base  

Figure  15:  A  joint  


Construction  continued  in  this  manner   (Figure  16)  until  the  tower  was   completed  (Figure  17).    The  tower   reached  the  roof,  at  a  height  of   approximately  3.6m.   The  tower  became  fairly  precarious  as   its  height  increased.  This  was  because   the  length  to  width  ratio  of  the  material   was  very  large,  and  because  of  the   anisotropic  nature  of  the  material.   In  attempt  to  stabilize  the  structure,  we   taped  the  sticks  together  between  the   triangle  levels.     A  spire  was  added  on  top,  as  it  was  the   most  efficient  way  to  add  more  height.  

 

 

Figure  1 6:  Partway   through  construction  

Properties  of  Balsa  Wood:   -­‐ Medium  to  coarse  texture   -­‐ Straight  Grain   o Easy  to  cut  along  the  grain   -­‐ Light  (low  density)   -­‐ Soft   -­‐ Anisotropic  (strong  in  tension,  not   strong  in  compression)  

Figure  1 9:  Balsa  Wood  (Wood   Database,  2014)  

Figure  1 7:   Completed  tower  


Studio  3    

 


Site%5%(Figure(10)(

(

Figure%10(

Structural:( / Cantilever(supported(at(one(end,( suspended(at(other( / Truss% Materials:(( / Steel((hollow,(painted(to(prevent(rusting)(( o Capping(to(prevent(water(damage( / Timber( / Stainless(steel((polished,(reflective)( (Figure(12)(( / Concrete( / Sandstone((Figure(13)( o Large(weight(to(support(load( Services:(lights,(air(conditioning( ((((%

% Site%6((Figure(14)(

Figure%14%

Figure%11%

Figure%12%

(

Figure%13%

Figure%15%

( Structural:( / Frame(system( / Fixed(joints(to(brick(wall((Figure(15)( / Pin(joint(to(accommodate(movement((Figure(16)( / Stringers(and(walkway(beam(form(a(cranked(beam( with(a(very(large(span( Figure%16%

 


o Allows(for(large(open(spaces( o Supported(by(floor(slab(and(roof(bracing( / Ledge((Figure(28)( o Stop(water(entering( Enclosure:(( / Glazing((glass)( o Doesn’t(fracture( / Mullions(and(transoms((Figure(29)(

% Transom

Mullion%

Glass:( / Liquid(state:(constant(fluid( state( / Made(from(silica( / Different(types(of(glass( (different(chemical( composition)( o Put(higher(levels(of( metal(in(glass(to(slow( process( % Site%9((Figure(30)(

Figure%28%

Figure%29%

Figure%30%

Structural:( / Pad(footings( o Individual(point(loads( / Stumps( / Strip(footing(for(load/bearing(wall( / Building(paper( o Water(proofing( / Stud(wall( / Cladding(system( Systems:( / Air(conditioning( / Plumbing( / Electrical(pipes( Construction(considerations:( / Include(crawl(space(under(building( o Room(to(fix(piping(problems(etc( %

(%

(

 


Studio  4  

Drawings     SITE PLAN

FLOOR PLAN

 

 

DETAIL PLAN

 

SECTION

SECTION DETAIL

 

  The  drawings  differ  greatly  to  observing  the  site  in  person  for  numerous   reasons.  Firstly  the  drawings  are  drawn  on  a  much  smaller  scale.  Secondly  the   symbols  used  do  not  actually  resemble  the  surface  or  appearance  of  the  material.     Structural  drawings  differ  from  architectural  drawings  in  that  they  provide  more   sections  and  details  illustrating  the  structural  components  of  the  design.  For   example,  structural  drawings  will  include  floor  plans  with  footings  and  structural   walls  while  architectural  drawings  will  not.  Architectural  drawings  are  better  for   finding  dimensions  from,  while  structural  designs  are  better  at  finding  measured   lengths  and  descriptions  of  materials.    


Studio  5   Activity   The  activity  was  to  construct  a  1:20  model  of  the  structural  system  of  a  section  of   the  new  sports  pavilion  using  the  construction  drawings.  Our  section  was  the   bottom  left  section  in    

Figure  1 :  The  map  indicating  the  different  sections  completed  in  the  studio  class  

 

Figures  2-­‐3  show  our  model  at  the  end  of  the  studio,  which  was  not  completed.  

Figure  2 :  The  floor  and  wall  structural  system  

  Ground  Floor   -­‐ Strip  footings   -­‐ Concrete  walls  on  top   -­‐ Retaining  wall     Roofing   -­‐ Cantilevering  off  truss    

 


Figure  3 :  The  roofing  structural  system  

 

Footings  and  Structural  Walls:   =  SF1       =  SF4     =  SB1     =  EB2     =  CW1     =  CW2     =  RW1       Figure  4:  Footings  and  Structural  Walls  

Strip  Footings   SF1:  400x600   SF4:  1200x300     Ground  Beams   SB1:  400x400   EB2:  400x500      

 

Retaining  Wall   RW1:  290x2100     Concrete  Walls   CW1:  200THK   CW2:  200THK  (Cantilever  retaining  wall)     Other  Load-­‐Bearing  Walls   MW1:  190THK  (Core-­‐filled  blockwork)  

 


Week  6   Presentation  of  Pavilion  Area  Models   Back  Area  (3-­‐5,  A-­‐B)   Basement   o Strip  footings   o 50mm  step  down  between  two   floor  systems   o Structural  walls   o Concrete  retaining  wall  at   back     Ground  Floor   o Structural  walls   o Rectangular  hollow  section   Figure  1 :  The  back  area  is  outlined  by   columns   the  blue  box     Roof   o Supported  by  retaining  walls  at  back   o Load  at  front  is  hung  from  the  truss  and  goes   upward    

 


Interim  Submission  Presentations   Timber  Workshop  

 


West  Footscray    

   


Footscray  

 

 


Week  8   Section  Scales  

  Activity   Creating  a  1:1  drawing  of  a  detail   Detail:  

                       

 


Notes:  

 

 

 


PIPING

Week$9$ BASEMENT - Car park - Elevated rotating platform o Stockers (where cars drive onto) ! 3 week installation process - Concrete structure o Precast columns o Suspended transfer slabs (in-situ) ! Formwork sheets o Beams placed horizontally ! Less strength ! Because of height restrictions

-

-

-

Walls o Blockwork ! 150-200mm ! Core filled ! Reinforced

HORIZONTAL BEAM

! BLOCKWORK

! FORMWORK TRANSFER SLAB SERVICES

LOCATION OF DRIP DRAINS

Waterproofing o All external walls waterproofed ! Lined with corrugated drip systems ! Drip drains Services o Suspended sewer o Storm water o Electrical cables o Gas service o Fire service ! Corking

 


ROOF - Concrete structure o Transfer slab (In situ) ! Different thicknesses o Sit on precast inter-tenancy walls - Areas o Hot water system o Garden area - Concerns o Waterproofing

GARDEN

HOT WATER SYSTEM

! ! ! ! ! !

-

-

 

Particularly important with concrete Concrete poured with crystals (repels water) 2 coatings of waterproofing Screeded Tiled roof on top Water exits the roof through outlet points • Travel through down pipes to basement storm water pipes o Natural lighting in apartments ! Light wells o Fire protection ! Provided by concrete Services LIGHT WELL o Radiant heating system o Duct system for cooling ! Interfering with plumbing and sprinkler o Solar panels o No ventilation (just doors, windows) o No water tanks (plan signed off before new regulations) Safety o Hand rail (during construction) o Balustrades for garden area HAND Construction Issues RAILS o Access to materials (limited space) ! Tower crane (in situ) OUTLET o Dealing with permits POINT ! power lines ! parking o Neighbours ! People don’t like change

 

 


TOP LEVEL - Concrete structure o Concrete walls (precast) ! External (structural) • 200mm thick at bottom • 150mm thick at top • Carry two floors ! Internal (non-structural) ! Expansion joints between panels • Grout tubes within panels with backing rod to stiffen for structural stability o Suspended ceilings: 2.1 – 2.4m ! 2.7m roof: double joist for additional support -

-

-

COLD WATER

 

EXTERNAL WALLS

EXPANSION JOINTS

GROUT TUBE

Lightweight steel framing o More cost effective because: ! Saves time ! Easier walk-up stage o Less drama with straightening walls ! No noggings Form o Front and rear elevations ! Balconies • Step down (waterproofing) ! Piling structure o Penetrations ! Push and pulls go through Services (attached to roof, floor penetrations) o Plumbing HOT WATER

-

TRANSFER SLAB

GAS

SPRINKLER

o Duct work Construction o Work boundaries from gridlines (from drawings) o All concrete but basement and stairwells will be covered

 

 


TOWN HOUSE - Two storey town house o 3 bedroom - Windows - Balcony - Duct system o Very expensive o - Need lots of basement spots to be popular on the market - Construction time (excluding planning time) o Normally 1 ½ - 2 years o This project running behind (issues) ! Planning permits ! Excavation ! Council (getting materials off site)

 

Week  10   Presentation  of  1:1  Drawings  (following  pages)   Site  Visit:  

 

 

 


1:1 DETAIL

 


ANNOTATIONS

FEEDBACK: • Change metal decking • Thicken lines appropriately • Add drawing name • Put annotations onto drawing  


FINAL

 


3D DRAWING


Note:  

 =  Load  

The  Task   To  construct  an  object  that  would  span  one  metre  and  withstand  as  great  a  load   as  possible.  

 

Figure  1  

Materials  

Plywood   -­‐ Good  tensile  properties   -­‐ Not  strong  under   compression  

Pine   -­‐ Strong  under  compression   and  tension  

 

Figure  3:  Pine  timber  cross-­‐section

 

Figure  2:  Plywood  

Group  1  –  My  group   Materials:  

2  pieces  of  plywood  (1200x3.2x90mm)   2  pieces  of  square  pine  (1200x35x35mm)   16  screws  (1  inch)  

Tools:   Electric  screwdriver  

Design:    

Compression chord (Pine) Web: carries the shear (Plywood)

Figure  4:  The  design  of  Group  1  

 

Tension chord (Pine)


Figure  5:  Load  paths  

-­‐

Similar  structural  concept  to  universal  beam     Compression flange Web: carries the shear Tension flange

 

 

Figure  6:  Universal  Beam  

-­‐

Screws  were  not  inserted  in  the  middle  of  the  beam  so  that  weak  points   were  not  created  where  the  load  was  going  to  pass  through  

 

Performance   Failure  load:  261kg   Maximum  Deflection:  23mm     Load  (kg)   Deflection  (mm)   Notes   191   10     261   20   Plywood  cracked   300   23   Structure  broke     Behaviour:   The  plywood  bent  under  the  compression,  because  it  could  not  transfer  the  shear   to  the  tension  member   -­‐ No  screws  in  the  middle  to  connect  the  timber  to  the  plywood  

Figure  7:  The  performance  of  the  structure  under  a  load.  

 

 


Type  of  Breakage   The  structure  broke  through  the  middle.     -­‐ With  the  plywood  failing  to  carry  the  shear,  the  load  was  primarily   carried  by  the  compression  chord   -­‐ Did  not  fracture  at  knot  because  of  its  strategic  placement   -­‐ Did  not  fracture  where  screws  were  inserted  

Figure  8:  The  breakage  of  the  structure.  

 

  Discussion:    

Figure  9:  Load   path  with  joined   members    

   

 

The  structure  would  have  held  a  greater  load  if  there  was  no  gap   between  the  two  pieces  of  pine;  if  they  were  joined  (Figure  9).           The  screw  in  the  knot  (Figures  10,  11)   made  the  point  of  weakness  even  weaker.   The  structure  was  oriented  such  that  the   knot  was  placed  in  the  area  of  the  beam  in   compression  (Figure  12),  so  that  it  would   Figure  10:  The   be  less  likely  to  fracture.   knot    

 

Figure  11:  A  screw  w as   Figure  12:  Knots  should  be     inserted   into  a  knot  in  one  of  the   placed  at  the  top  of  a  beam   pieces  of  pine.        

 

Figure  13:  A  greater  load  can  be   supported  w ith  greater  height  as   opposed  to  greater  width.    

 

    The  structure  was  oriented  vertically  so  the  load   had  the  most  medium  to  travel  through  (Figure   13).      


Group  2   Materials:   2  pieces  of  plywood  (1200x3.2x90mm)   2  pieces  of  pine  (1200x42x18mm)    

Design:   The  design  did  not  have  a  platform  on  which  the  load  could  be  placed,  so  one  was   added  as  seen  in  Figure  14.    

Figure  14:  The  design  of  Group  2,  with  load  paths  indicated.  

   

Performance:   Failure  load:  200kg   Maximum  Deflection:  60mm     Load  (kg)   Deflection  (mm)   180   10   200   15   200   20  

Notes       Plywood  and  pine  cracked.  Weight   dropped  to  160.   Structure  broke  

185   60     Behaviour:   -­‐ Plywood  warping  under   compression  to  the  point  of   breakage  

Type  of  Breakage:   -­‐ Split  through  middle  of  pine   base  and  plywood  

Figure  16:  Breakage  

Figure  15;  Plywood  warping  

 

 


Group  3  

Materials:   1  piece  of  plywood  (1200x3.2x90mm)   3  pieces  of  square  pine  (1200x35x35mm)  

Design:  

Figure  17:  Group  3’s  design,  with  load  paths  indicated.  

 

Performance:   Failure  load:  260kg   Maximum  Deflection:  40mm     Load  (kg)   Deflection  (mm)   11   5   116   10   250   30   260   40     Behaviour:   -­‐ Structure  twisted  under   load   -­‐ Brace  was  inserted  to   restrain  the  truss  from   buckling  laterally   -­‐ Trusses  experience  similar   conditions,  and  must  be   braced  to  counteract  the   sideways  force.        

Notes   Structure  began  to  twist.   Support  was  added.       Structure  broke  

Figure  18:  The  structure  required  bracing  to  restrain  it   from  twisting  


Type  of  Breakage:   -­‐ Member  that  was  being  braced  detached  itself  under  load   o Nail  slid  through  plywood  

 

Figure  19:  Breakage  

Group  4  

Materials:  

1  piece  of  plywood  (1200x3.2x90mm)   3  pieces  of  pine  (1200x42x18mm)  

Design:  

 

Figure  20:  Group  4’s  design,  with  load  paths  indicated.  


Performance:   Failure  load:  385kg   Maximum  Deflection:  36mm     Load  (kg)   Deflection  (mm)   290   20   332   30   385   36     Behaviour:  

Notes       Structure  broke    

Figure  21:  Beams  bent  under  the  load  

-­‐ Beams  bent  under  load   -­‐ Plywood  compressed   but  assists  carrying  the  load   through  tension.                            

  Breakage:   -­‐ One  beam  broke   o Broke  in  middle  where  nail  was  inserted  into  the  timber.   o Nail  inserted  into  timber  created  weak  point  in  beam  

 

Figure  22:  Breakage  occurred  where  nail  was  inserted  


Glossary   Sources  used  for  this  glossary  are:  (Ching,  2011)  (Commonwealth  of  Australia,  2012)  (Hunt,   2003)  (My-­‐green-­‐home-­‐project.com,  2014)  (NSW  Department  of  Education  and  Communities;   Charles  Sturt  University,  2014)  (Vassigh,  2008).  

  Alloy:  a  metal  made  by  combining  two  or  more  metallic  elements,  especially  to   give  greater  strength  or  resistance  to  corrosion.  E.g.  an  alloy  of  nickel,  bronze,   and  zinc   Anchorage:  Securing  the  structure  to  the  ground  to  resist  sliding,  uplift  or   overturning.     Axial  Load:  any  load,  compressive  or  tensile,  that  acts  parallel  to  an  axis  of  the   material Base  shear:  The  minimum  design  value  for  the  total  lateral  seismic  force  on  a   structure  assumed  to  act  in  any  horizontal  direction.  It  equals  the  total  dead  load   of  the  structure  multiplied  by  a  number  of  coefficients  (reflecting  the  character   and  intensity  of  the  ground  motions  in  the  seismic  zone,  the  soil  profile  type,  the   type  of  occupancy,  the  distribution  of  its  mass  and  stiffness  of  the  structure,  and   the  natural  period.     Beam:  A  horizontal  element  that  is  supported  at  each  end,  such  that  it  can  carry   a  vertical  load  (Hunt,  2003).  

    Bending:  When  bending  moment  occurs,  part  of  a  structure  can  rotate  or  bend.   Bending  stress  is  a  combination  of  compressive  and  tension  stresses  developed   at  a  cross  section  of  a  structural  member  to  resist  a  transverse  force.  (Maximum   value  at  surface  furthest  from  neutral  axis.)  (Ching  (2.14),  2011)  

 

 

 


Bracing:  The  act  of  members,  usually  diagonal,  resisting  lateral  loads  and/or   movements  of  a  structure  (NSW  Department  of  Education  and  Communities;   Charles  Sturt  University,  2014).    

Sheet  Bracing:   -­‐ Plywood   -­‐ Much   stronger  

  Cross  Bracing:   -­‐  Hoop  iron   (aluminium)    

    Braced  Frame:  a  structural  system  which  is  designed  primarily  to  resist  wind   and  earthquake  forces.  Members  in  a  braced  frame  are  designed  to  work  in   tension  and  compression,  similar  to  a  truss. Buckling:  The  sudden  lateral  or  torsional  instability  of  a  slender  structural   member  induced  by  the  action  of  an  axial  load  before  the  yield  stress  of  the   material  is  reached.   Caisson:  A  cast-­‐in-­‐place,  plain  or  reinforced  concrete  pier  formed  by  boring  with   a  large  auger  or  excavating  by  hand  a  shaft  in  the  earth  to  a  suitable  bearing   stratum  and  filling  the  shaft  with  concrete.  Also  referred  to  as  drilled  piles  or   piers.   Cantilever:  A  projecting  beam  or  other  rigid  structural  member  supported  at   only  one  fixed  end.  

  Centre  of  Mass:  The  point  about  which  an  object  is  balanced  (Ching,  2011).      


Column:  Slender  and  primarily  vertical  members;  a  form  of  strut  that  can  carry  a   vertical  load,  supported  by  an  equal  and  opposite  reaction  force.    

 

  LONG >12:1

Ratio of Length:Shortest side of Cross section Behaviour under load Buckle i.e. Type of failure Buckling  and  Effective  Length  

SHORT <12:1

Crush (become shorter)

  Composite  Beam:  A  steel  beam,  which  has  concrete  decking  above  it,  and  which   is  connected  to  the  concrete  by  shear  connectors,  which  cause  the  steel  and  the   concrete  to  act  together.   Compression:  An  external  pushing  force  that  squeezes  together  the  particles  of   a  material,  compacting  and  shortening  the  material.   Concrete  Plank:  A  hollow-­‐core  or  solid,  flat  beam  used  for  floor  or  roof   decking.  Concrete  planks  are  usually  precast  and  prestressed.   Consolidation:  The  reduction  in  the  volume  of  soil  voids  containing  air  or  water,   due  to  the  load  of  a  structure  on  the  foundation.   Control  Joint:  Constructed  to  open  slightly  to  accommodate  the  shrinkage  of  a   concrete  masonry  wall  as  it  dries  after  construction.    


Cornice:  A  moulding  around  the  top  of  the  walls  of  a  room  just  below  the  ceiling.  

  Corrosion:  The  process  of  a  metal  being  gradually  damaged  by  reacting   chemically.   Curtain  Wall:  An  exterior  wall  supported  wholly  by  the  steel  or  concrete   structural  frame  of  a  building  and  carrying  no  loads  other  than  its  own  weight   and  wind  loads.  (Ching  (7.24),  2011)   Diaphragm:  A  structural  element  that  resists  and  collects  lateral  forces  in  the   horizontal  planes  of  a  structure  and  transfer  them  to  the  vertical  bearing   elements.     Deflection:  The  perpendicular  distance  a  spanning  member  deviates  from  a  true   course  under  transverse  loading,  increasing  with  load  and  span  and  decreasing   with  an  increase  in  the  moment  of  inertia  of  the  section  of  the  modulus  of   elasticity  of  the  material.  

  Dead  Load:  The  intrinsic  weight  of  a  structure  (Ching,  2011).   Deep  Foundations:  One  of  two  types  of  foundation  systems,  that  extend  down   through  unsuitable  soil  to  a  more  appropriate  bearing  stratum.  They  are   employed  with  the  soil  underlying  a  foundation  is  unstable  or  of  inadequate   bearing  capacity.   Defect:  A  shortcoming  or  imperfection,  often  due  to  incorrect  material  selection.   Occur  when  insufficient  considerations  are  given  to  environmental  or  exposure   conditions.     Design  Wind  Pressure:  A  minimum  design  value  for  the  equivalent  static   pressure  on  the  exterior  surface  resulting  from  a  critical  wind  velocity.  It  is  equal   to  a  reference  wind  pressure  measured  at  a  height  of  10m,  modified  by  a  number   of  various  coefficients  (to  account  for  exposure  condition,  building  height,  wind   gusts,  geometry,  orientation).   Differential  settlement:  The  relative  movement  of  different  parts  of  a  structure   caused  by  uneven  consolidation  of  the  foundation  soil.  It  can  cause  a  building  to   shift  out  of  plumb  and  cracks  to  occur  in  its  foundation,  structure  or  finishes.     Door  Furniture:  The  handles,  locks  and  other  fixtures  on  a  door.   Down  Pipe:  a  pipe  to  carry  rainwater  from  a  roof  to  a  drain  or  to  ground  level.


Drawings:   SITE PLAN

FLOOR PLAN

 

 

DETAIL PLAN

 

SECTION

SECTION DETAIL

 

  Drip:  A  metal  strip  or  hole  that  directs  water  off  to  prevent  it  from  entering  the   building.  

  Dynamic  Loads:  Loads  that  are  applied  suddenly  to  a  structure,  often  with  rapid   changes  in  magnitude  and  point  of  application.      


Earthquake  Buildings:  

 

Framing:  

 

Sill:  

 

 

 


Earthquake:  a  series  of  longitudinal  and  transverse  vibrations  induced  in  the   earth’s  crust  by  the  abrupt  movements  of  plates  along  fault  lines.     Eave:  The  part  of  a  roof  that  overhangs  the  walls  of  a  building.  

  Eccentric  Load:  Any  load  that  is  not  applied  through  the  primary  axis,  tending  to   produce  bending.   Equilibrium:  a  state  of  balance  or  rest  resulting  from  the  equal  action  of   opposing  forces (Hunt,  2003).  

   (Hunt,  2003) Expansion  Joint:  A  continuous,  unobstructed  slot  constructed  to  close  slightly  to   accommodate  the  moisture  expansion  of  brick  and  stone  masonry  surfaces.     Façade:  The  shell  or  envelope  of  a  building,  consisting  of  the  roof,  exterior  walls,   windows  and  doors  (Ching,  2011).   Fascia:  A  horizontal  member  used  on  the  exterior  vertical  face  of  a  cornice,   capping  the  end  of  rafters.  


Flashing:  Thin  continuous  pieces  of  sheet  metal  or  other  impervious  material   installed  to  prevent  the  passage  of  water  into  a  structure  from  an  angle  or  joint   through  the  use  of  redirection  and  gravity.  

  Flutter:  The  rapid  oscillations  of  a  flexible  cable  or  membrane  structure  caused   by  the  aerodynamic  effects  of  wind.  

  Footing:  The  construction  whereby  the  weight  of  the  structure  is  transferred   from  the  base  structure  to  the  foundation  (NSW  Department  of  Education  and   Communities;  Charles  Sturt  University,  2014).     Foundations: The  substructure  of  the  building  constructed  wholly  or  partly   below  the  ground  in  order  to  support  the  superstructure  (Ching,  2011).   Frame:  The  skeleton  structure  of  a  building.   Gang  Nail  Plate:  Used  for  joining  two  pieces  of  timber  (sandwiches  them   together)  

    Girder:  a  large  iron  or  steel  beam  or  compound  structure  used  for  building   bridges  and  the  framework  of  large  buildings.  

Gutter:  a  shallow  trough  fixed  beneath  the  edge  of  a  roof  for  carrying  off   rainwater.  Typically  vinyl,  galvanised  steel  or  aluminium.  Also  copper,  stainless   steel,  terne  metal,  wood.  

IEQ:  Indoor  Environmental  Quality.  Encompasses  daylighting,  thermal  comfort,   views  and  so  on.  


Insulation:  A  material  used  to  control  the  flow  or  transfer  of  heat  through  the   exterior  assemblies  of  a  building,  and  thereby  prevent  excessive  heat  loss  in  cold   seasons  and  heat  gain  in  hot  weather.  

  Joist:  a  length  of  timber  or  steel,  typically  arranged  in  parallel  series  to  form  a   structural  framework  that  supports  a  floor  or  ceiling.  

Joist  Flooring  System  

  Lifecycle:  The  lifecycle  of  a  material  is:  acquisition;  processing  and   manufacturing;  transportation  and  distribution;  construction,  use  and   maintenance;  and  disposal,  recycling  and  reuse.   Lintel:  a  horizontal  support  of  timber,  stone,  concrete,  or  steel  across  the  top  of  a   door  or  window.  (Commonwealth  of  Australia,  2012)   Load  Path:  The  direction  in  which  each  load  situated  on  a  structure  will  pass   through  connected  members  to  the  ground.  

Masonry:  Stonework,  clay  and  concrete.  

 


Moment:  The  tendency  to  make  an  object  or  a  point  rotate  (Vassigh,  2008).   Mo  =  F  x  d   Moment  of  Inertia:  A  geometric  property  that  indicates  how  the  cross-­‐sectional   area  of  a  structural  member  is  distributed.  It  is  equal  to  the  sum  of  the  products   of  each  element  of  an  area  and  the  square  of  its  distance  from  a  coplanar  axis  of   rotation.     Moment  Resisting  Frame:  A  structural  system  that  is  constructed  with  rigidity   connected  joints  that  provide  a  continuous  interface  between  the  horizontal  and   vertical  elements.  Thus  the  frame  is  made  rigid  enough  to  act  as  a  monolithic  unit   under  the  impact  of  lateral  loads.     Natural  Period:  The  time  required  for  one  complete  oscillation.   Nogging:  A  horizontal  member  placed  between  studs  to  strengthen  the   framework  and  prevent  buckling.    

  Pad  Footing:  A  footing  that  consists  of  a  pad  under  a  stump.  

 (Ching,  2011)   Parapet:  An  extension  of  the  wall  on  an  edge  that  acts  as  a  protective  barrier  

  Pier:  Stump  made  from  block  work  (masonry)  i.e.  bricks,  concrete  blocks.  Takes   more  load  than  stump.  

  Pile  Foundation:  A  system  of  end-­‐bearing  or  friction  piles,  pile  caps,  and  tie   beams  for  transferring  building  loads  down  to  a  suitable  bearing  system.        


Point  Load:  A  load  that  rests  on  one  place  along  an  element.  

  Portal  Frame:  a  rigid  structural  frame  consisting  essentially  of  two  uprights   connected  at  the  top  by  a  third  member.  

Purlin:  a  horizontal  beam  along  the  length  of  a  roof,  resting  on  rafters.  

  Rafter:  a  beam  forming  part  of  the  internal  framework  of  a  roof,  spanning  from   the  top  plate  to  the  ridge  beam.  

  Reaction  Force:  A  force  that  resists  any  applied  force  in  an  equal  and  opposite   manner  (Ching,  2011).  

Retaining  Wall:  Any  wall  subjected  to  lateral  pressure  other  than  wind  pressure   and  built  to  retain  material  (NSW  Department  of  Education  and  Communities;   Charles  Sturt  University,  2014).      


Roofing  (Framed)  

 

Sheet  Roofing   -­‐ Water  flows  easily   -­‐ Doesn’t  need  big  pitch   -­‐ Materials:   o Fibre  glass   o Galvanised  steel   Tiled  Roofing  

  New  and  old  roofing  systems   OLD HOUSES NEW HOUSES - Rafters span - Truss roofing large distances - External load bearing walls (5-6m) only (taking far greater load) - Internal and o Important to consider     external load connections between bearing walls truss and wall   Sacrificial  Formwork:  The  tension  component  of  a  concrete  slab  that  remains   permanently  

  Sandwich  Panel:  A  composite  material  consisting  of  a  phenolic  resin  core   sandwiched  between  two  external  skins  of  aluminium  sheets.   Sealant:  A  material  used  to  seal  something  so  that  it  is  airtight  or  waterproof.     Seams:   Standing     Batten     Lock    


Seasoned  Timber:  Timber  dried  to  a  moisture  content  that  is  stable.  

Seismic  Base  Isolator:  A  connection  placed  between  the  foundation  and  the   substructure  that  allow  the  substructure  to  move  independently ��of  the   foundation  during  earthquakes.     Settlement:  The  gradual  subsiding  of  a  structure  as  the  soil  beneath  its   foundation  consolidates  under  loading.  Results  in  consolidation.   Settlement  loads:  Imposed  on  a  structure  by  subsidence  of  a  portion  of  the   supporting  soil  and  the  resulting  differential  settlement  of  its  foundation.  

  Shadow  Line  Joint:  Narrow  joints  that  leave  a  slight  shadow  between  panels.     Shallow  Foundations:  One  of  the  two  types  of  foundation  systems,  employed   when  stable  soil  of  adequate  bearing  capacity  occurs  relatively  near  to  the   ground  surface.   Shear  Force:  An  internal,  unaligned  force  caused  by  an  external  force,  pushing   one  part  of  a  body  in  one  direction,  and  another  part  in  the  opposite  direction.  

  Shear  Wall:  A  structural  element  made  of  rigid  materials  (reinforced  concrete,   steel  framing  with  bracing)  that  resist  lateral  loads  in  the  vertical  plane.  They   collect  the  lateral  loads  from  the  horizontal  resisting  elements  and  transfer  them   to  the  foundation.   Skirting:  A  wooden  board  running  along  the  base  of  an  interior  wall  to  protect   the  plasterboard.  

  Slab  on  ground:  A  foundation  slab  that  is  laid  directly  on  the  ground   Soffit:  The  underside  of  a  structural  component,  such  as  an  arch,  balcony,  beam,   staircase,  cornice  or  eaves.   Soft  Storey:  A  multi-­‐storey  building  in  which  one  or  more  floors  have  windows,   wide  doors,  large  unobstructed  commercial  spaces  or  other  openings.     Space  Frame:  A  long-­‐spanning  three-­‐dimensional  plate  structure  based  on  the   rigidity  of  the  triangle  and  composed  of  linear  elements  subject  only  to  axial   tension  or  compression.      


Spacing:  The  centre-­‐to-­‐centre  distance  between  two  parallel  structural   members.  

  (Commonwealth  of  Australia,  2012)   Span:  The  distance  between  two  structural  supports,  measured  along  a  member.  

  Stability:  The  state  of  being  firmly  fixed  and  secure.   Static  Loads:  Loads  that  are  assumed  to  be  applied  slowly  to  a  structure  until  it   reaches  its  peak  value  without  fluctuating  rapidly  in  magnitude  or  position.   Steel   Hot Rolled Cold Formed o Poured into its final form o Bent into shape o Far greater tensile strength o Thinner, not as good quality o Used for secondary support (e.g. Purlins) Steel  Decking:  Light-­‐gauge,  corrugated  steel  sheets  used  in  constructing  roofs  or   floors.    


Steel  Members   Universal   Circular   Beam  (UB)   Hollow   [Strongest]   Section   (CHS)  

Parallel   Flange   Channel   (PFC)  

Square   Hollow   Section   (SHS)  

Equal   Angle  (EA)  

Unequal   Angle   (UEA)  

 

          Stud:  an  upright  member  in  the  wall  of  a  building,  forming  part  of  the  structural   framework  and/or  to  which  laths  and  plasterboard  are  nailed.   Metal:   Timber:   -­‐  span  far  greater     lengths     Stress:  Load  (force)  per  unit  area  that  tends  to  deform  the  body  on  which  it  acts.   E.g.  Deflection,  bending   Strip  Footing:  The  continuous  spread  footings  of  foundation  walls  (Ching,   2011).   Structural  Joint:  A  connection  between  two  elements  (Ching,  2011).   Stucco:  A  coarse  plaster  composed  of  Portland  or  masonry  cement,  sand  and   hydrated  lime,  mixed  with  water  and  applied  in  a  plastic  state  to  form  a  hard   covering  for  walls.  (Ching  7.36,  2011)   Substructure:  The  underlying  structure  forming  the  foundation  of  a  building   (Ching,  2011).   Superstructure:  The  vertical  extension  of  a  building  above  the  foundation   (Ching,  2011).   Tilt-­‐Up  Conctruction:  A  method  of  casting  reinforced  concrete  wall  panels  on   site  in  a  horizontal  position,  then  tilting  them  up  into  their  final  position.   Timber:  Classified  as  either  hardwood  or  softwood  (depending  on  density).  

  Tension:  A  pulling  force  that  stretches  and/or  elongates  the  element  or  material.     Top  chord:  The  top  beams  in  a  truss,  generally  in  compression.    

  Torsion:  Twisting.  It  is  usually  the  result  of  varying  perimeter  strength  in  a   building.  (Common  in  structures  with  an  open  storefront  of  vehicular  access  on   one  or  two  sides  and  concrete  firewalls  on  the  other  sides.)  It  can  be  eliminated   by  ensuring  that  the  building  has  a  uniform  stiffness  throughout  its  perimeter.      


Trusses:  A  structural  framework,  consisting  of  top  chords,  bottom  chords  and   web  members.  

  Underpinning:  The  process  of  rebuilding  or  strengthening  the  foundation  of  an   existing  building,  or  extending  it  when  a  new  excavation  in  adjoining  property  is   deeper  than  the  existing  foundation.   Vapour  Barrier:  Any  material  (typically  a  plastic  or  foil  sheet)  that  resists  the   diffusion  of  moisture  used  for  damp  proofing.     Water  Strategies   -­‐ Use  gravity   NO OPENINGS KEEP WATER AWAY FROM OPENINGS NEUTRALISE WATER FROM OPENINGS E.g. Drip, cavities   -­‐ most common -­‐ e.g. brick veneer

Windows  

 

 

 

 

Different  Types:  

   

Sills  

   


Vapour  Retarder:  A  material  of  low  permeance  installed  in  a  construction  to   prevent  moisture  from  entering  and  reaching  a  point  where  it  can  condense  into   a  liquid.  

   (My-­‐green-­‐home-­‐project.com,  2014)   Window  Sash:  The  part  of  the  window  frame  that  holds  the  glass  and  moves   with  the  window.  

  Yield  Stress:  the  stress  level  at  which  a  material  ceases  to  maintain  its  form  and   structure.    

Bibliography   Ching,  F.  D.  (2011).  Building  Construction  Illustrated.  New  York:  Wiley  &  Sons,   Inc.   Design  Technology.  (2014).  Medium  Density  Fibreboard.  Retrieved  March  13,   2014  from  Design  Technology:  http://www.design-­‐technology.org/mdf.htm   Hunt,  T.  (2003).  Tony  Hunt's  Structural  Notebook.  Oxford:  Architectural  Press.   Kronospan.  (2014).  Standard.  Retrieved  March  13,  2014  from  Kronospan:   http://www.kronospan.co.uk/kronobuild/products/view/mdf/standard   NSW  Department  of  Education  and  Communities;  Charles  Sturt  University.   (2014).  Common  Construction  Terms.  Retrieved  March  15,  2014  from  HSC:   http://www.hsc.csu.edu.au/construction/glossary/3246/common_terms.htm   Vassigh,  S.  (2008).  Interactive  Structures,  Version  2.0.  Wiley  &  Sons,  Inc.   Wood  Database.  (2014).  Balsa.  Retrieved  March  18,  2014  from  Wood  Database:   http://www.wood-­‐database.com/lumber-­‐identification/hardwoods/balsa/   Wood  Solutions.  (2012).  Medium  Density  Fibreboard  (MDF).  Retrieved  March  13,   2014  from  Wood  Solutions:  http://www.woodsolutions.com.au/Wood-­‐Product-­‐ Categories/Medium-­‐Density-­‐Fibreboard-­‐MDF    


699310_Brigitte danks_logbook_envs10003