UA Engineering Research Review

Page 7

P

eiwen “Perry” Li, director of the UA Energy and Fuel Cell Laboratory, is leading a $7 million, five-year multi-university research project to advance concentrated solar thermal power systems, or CSP systems. The research team is investigating the use of various salt mixtures to achieve significantly higher temperatures in CSP heat-transfer fluids.

Concentrated solar power uses parabolic mirrors to focus the sun’s heat on tanks and pipes containing heat-transfer fluid, which carries energy from the solar concentrator to the thermal power plant. The heat-transfer fluid flows to steam boilers, where it heats water to create steam. Then the steam drives turbines to produce electricity, much like a traditional power plant. A higher-temperature heat-transfer fluid means temperatures have much

stability limit of 400 degrees Celsius. Li and his multidisciplinary research team are investigating less corrosive salt mixtures that operate at up to 1200 degrees Celsius. “This is one of the critical restrictive factors of the thermal-to-electric conversion efficiency in a modern CSP plant,” said Li. “To advance the efficiency of concentrated solar thermal power and develop the next generation of CSP technology, our research is focused on finding a hightemperature heat-transfer fluid.” Combined with improved insulation of fluid-circulation systems and storage tanks, the new CSP systems – unlike wind and photovoltaic solar panels – will be able to store heat to generate power efficiently even when the sun is not shining. Plus, the new salt mixture is expected to reduce corrosion on pipes and tanks, which means less costly upkeep on CSP systems. The award for the project, titled “Halide and Oxy-halide Eutectic Systems for High-Performance High-Temperature Heat Transfer

HOTS Team The multidisciplinary research team includes several researchers in the UA College of Engineering.

• Cho Lik Chan, professor, aerospace and mechanical engineering • Pierre Deymier, professor and department head, materials science and engineering • Dominic Gervasio, professor, chemical and environmental engineering • Qing Hao, assistant professor, aerospace and mechanical engineering • Peiwen “Perry” Li, associate professor, mechanical and aerospace engineering • Pierre Lucas, professor, materials science and engineering • Moe Momayez, associate professor and associate department head, mining and geological engineering • Krishna Muralidharan, assistant professor, mining and geological engineering Additionally, researchers from Arizona State University Polytechnic and Georgia Institute of Technology are contributing to the project.

“Our research is focused on finding a high-temperature heat transfer fluid to advance the efficiency of concentrated solar thermal power and develop the next generation of CSP technology.” Peiwen “Perry” Li, director of the UA Energy and Fuel Cell Laboratory, associate professor of mechanical and aerospace engineering

further to fall before the transfer fluid cools and solidifies. Most salt heat-transfer fluids use a mixture of alkali nitrate salts, a highly corrosive molten mixture that has a melting temperature below 250 degrees Celsius and a high-temperature University of Arizona College of Engineering

Fluids,” was made as part of the U.S. Department of Energy’s SunShot Initiative, an effort to make solar power comparable in cost to other energy sources by 2020.

Contact

Peiwen “Perry” Li 520.626.7789 peiwen@email.arizona.edu

5


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.