Versatility and Vicissitude

Page 60

specific material and geometric behaviour in formative processes, the size and shape constraints of involved machinery, the procedural logistics of assembly and the sequences of construction. Here, the far-reaching potential of computer-aided manufacturing (CAM) technologies is evident once they turn into one of the defining factors of a design approach seeking the synthesis of form-generation and materialisation processes. At this point the highly specific restrictions and possibilities of manufacturing hardware and controlling software can become generative drivers embedded in the setup and development of the computational framework. Generally it can be said that the inclusion of what may be referred to as system-intrinsic characteristics and constraints comprises the first crucial constituent of the computational setup, defined through a series of relevant parameters. The definition of the range within which these parameters can be operated, while remaining coherent with the material, fabrication and construction constraints, is the critical task for the designer at this stage.

Analysis plays a critical role during the entire morphogenetic process, not only in establishing and assessing fitness criteria related to structural and environmental capacity, but also in revealing the system’s material and geometric behavioural tendencies. If effectiveness is defined as the extent to which actual performance compares with targeted performance, the inherent need for analysis and diverse and versatile analytical methods becomes immediately clear. The second crucial constituent of the generative computational framework is therefore recurring evaluation cycles that expose the system to embedded analysis tools. Analysis plays a critical role during the entire morphogenetic process, not only in establishing and assessing fitness criteria related to structural and environmental capacity, but also in revealing the system’s material and geometric behavioural tendencies. The conditioning relationship between constraint and capacity in concert with the feedback between stimuli and response are consequently operative elements within the computational framework. In this way evaluation protocols serve to track both the coherency of the generative process with the

aforementioned system-intrinsic constraints, and the system’s interaction with a simulated environment. Depending on the system’s intended environmental modulation capacity, the morphogenetic development process needs to recurrently interface with appropriate analysis applications, for example, multiphysics computer fluid dynamics (CFD) for the investigation of thermodynamic relations or light and acoustic analysis. However, it is important to note that CFD does always only provide a partial insight into the thermodynamic complexity of the actual environment, which is far greater than any computational model can handle at this moment in time. Nonetheless, as the main objective here lies not solely in the prediction of precise data, but mainly in the recognition of behavioural tendencies and patterns, the instrumental contributions of such tools are significant. In parallel to the environmental factors, continual structural evaluation informs the development process. However, it is imperative to recognise that the computational framework described here does not at all reproduce a technocratic attitude towards an understanding of efficiency based on a minimal material weight to structural capacity ratio. Nor does it embrace the rationale of what 20th-century engineers called ‘building correctly’. Structural behaviour here rather becomes one agent within the multifaceted integration process. Overall this necessitates a shift in conceptualising multicriteria evaluation rather than an efficiency model. Biologists, for example, refer to effectiveness as the result of a developmental process comprising a wide range of criteria. Accordingly the robustness of the resulting systems is as much due to the persistent negotiating of divergent and conflicting requirements as their consequential redundancies. Evaluating a context-specific, differentiated material and spatial arrangement requires taxonomy on the basis of casespecific criteria, yet not inevitably type defined by gestalt. Each family of design solutions can evolve from a specific feedback between material system and environmental context without prejudiced preselection. It is therefore also of great interest to evaluate design solutions for unanticipated spatial arrangements and ultimately also the ensuing potentials for different modes of habitation. If effectiveness is defined as the ability to generate emergent effects, analysis therefore needs to be both quantitative and qualitative (although this artificial dichotomy often comes into the way of more integral modes of analysis), as well as open to questions not a priori defined at the onset of a design process. Morphogenesis driven by analysis thus requires creativity, intelligence and instrumentality in devising integral analytical methods. This necessitates both further research into the setup and running of integral computational design processes, and developing literacy in deploying these processes as well as gaining a new sensitivity in unfolding their inherent design potential. Architectures will always yield multivaried effects; the question is, however, how far designers are able to inform processes of form-generation with desired and emergent effects and effectiveness.

57


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.