Page 1

Cell orgAnelles and their functions

Information and Communication Technologies(ICT) 2nd Exam ANIL TIMBIL


In this lab you will look at the eukaryotic cells of plants and animals. Eukaryotic cells are distinguished from the more primitive prokaryotic cells by the presence of 1) cytoplasmic membranous organelles, 2) a nuclear membrane (i.e. a true nucleus), and 3) chromosomal proteins. In this lab we will focus primarily on organelles, their functions within the cell and how they differ between plant and animal cells. Think of the cell as a microscopic city. Like a real city it requires many services to keep it clean and running 2

smoothly. Think of some of the services a real city needs: traffic control, waste disposal, and authority figure just to name a few. Like our imagined city a cell needs the same



he nucleus houses the majority of genetic material of a cell. The nucleus is the “brain” of the cell and controls all activity within the cell. Using DNA as a blueprint

(like the blueprints of a city) the nucleus directs the proservices. Organelles duction of proteins. are the “workers” You will learn about that provide these this process in the services. The folDNA Transcription lowing is a list deand Translation lab. scribing the various functions of some common organelles. The NUCLEUS (“mayor of city

CELL RIBOSOMES (“lumber or brick yard”) The ribosomes carry out manual labor in the form of protein synthesis for the nucleus. They bring together all the raw ingredients such as RNA (copies of the original DNA blueprints) and amino acids to assemble proteins. The proteins created are essential to cell and organismal function. Think of proteins as machinery for cell functions much like electricity and plumbing are essential in a real city.  For example, enzymes are a type of protein without which life could not exist.

road system along which industry Border”) and CELL WALL can be found. Goods are manufactured and shipped to needed areas (“City Wall”) via the road system. Rough ER is named for the presence of ribosomes along its membrane and is the source of proteins. Smooth ER lacks ribosomes and is responsible for lipid synthesis and processes a variety of metabolic processes such as drug detoxification.


The large and small subunits of ribosomal RNA translating an mRNA strand into a polypeptide chain. Refer to DNA Transcription and Translation for further reading.

The ENDOPLASMIC RETICULUM (“highways and road systems”) There are two types of endoplasmic reticulum (ER) – Smooth ER and Rough ER. This extensive network makes up approximately one half of all membranous tissue of the cell and is the site of membrane and protein synthesis. The ER system is much like a

Can you tell the difference between the smooth and rough ER?


ell membranes are found in animal cells whereas cell walls are found in plant cells. Cell walls and membranes have similar functions. Like a city perimeter, cell membranes surround the cell and have the ability to regulate entrance and exit of substances, thereby maintaining internal balance. These membranes also protect the inner cell from outside forces. Cell walls, as the city analogy implies, are much stronger than cell membranes and protect cells from lysing (exploding) in extremely hypotonic 3 (diluted) solutions.


You will learn more about these concepts in the Biological Membranes lab.

Picture of a cell’s cytoskeleton- a complex network of tubules and filaments.       

The cytoplasm is the substance surrounding the visible vacuoles in this cell.

GOLGI APPARATUS (“post office”) Like a post office, the golgi apparatus is used for shipping those goods created by the ER and ribosomes to the rest of cell.

CYTOPLASM (“lawns and parks”) Artist rendition of an animal cell membrane.                   Artist rendition of a plant cell wall.             

CYTOSKELETON (“steel girders”) The cytoskeleton makes up the internal framework, like the steel girders that are the framework for buildings in a city that gives each cell its distinctive shape and high level of organization. It is important for cell movement and cell division (mitosis). 4

Cytoplasm is a semi-fluid substance (think gelatin) found inside the cell. The cytoplasm encases, cushions and protects the internal organelles. It is the cell landscape found in any space where organelles are not and therefore is much like the lawns and parks of our city.           

EM picture of a golgi apparatus                    Artist rendition of the Golgi Complex ANIL TIMBIL



energy plant”) Chloroplasts are organelles found only in plant cells. Like a solar energy plant they use sunlight to create energy for the city. Chloroplasts are the site of photosynthesis a process in which the plant uses carbon dioxide, water and sunlight to create energy in the form of glucose for the plant cell as well as heterotrophs that consume the plant. Electron microscope picture of a mitochondria.

Electron microscope picture of a lysosome.

VACUOLES and VESICLES (“warehouses, water towers or garbage dumps”)

Artist rendition of a chloroplastsite of photosynthesis in plant cells.

MITOCHONDRIA (“energy plant”) LYSOSOMES (“waste Mitochondria are found in both disposal and recycling”) plant and animal cells and is the site of cellular respiration. Through this process that will be covered in the Photosynthesis and Respiration lab ATP is created which is used for energy by the cell.

Think of these membrane sacs that have a variety of functions as containment units for anything in excess in a city. They can hold many substances from organic molecules to simple excess water. Plant cells have a central vacuole that is important in maintaining plant turgidity. You can read more about this phenomenon in the Biological Membranes Lab.

The lysosomes are digestive sacs that can break down macromolecules in the cell using the process of hydrolysis. The digestion is carried out with lysosomal enzymes found in the lysosome. Like waste disposal in a city, lysosomes help keep excessive or bulky macromolecules from building up in the cell.

Central vacuole of a plant cell. ANIL TIMBIL

Plant versus Animal 5 Cells


Now that you know some important cell organelles let us identify those that distinguish plant cells from animal cells. From the descriptions above, we can identify three organelles unique to plant cells: 1) cell wall (versus a cell membrane in animal cells), 2) central vacuole (regular vacuoles are found in animal cells) and 3) chloroplasts (animals do not perform photosynthesis. This is what makes plants autotrophs and animals heterotrophs.)



cell functions

Read more
Read more
Similar to
Popular now
Just for you