Page 1

CARTILLA ELEMENTOS PROCESOS INDUSTRIALES

ANDRES STEVENS DIAZ SILVA JULIAN VARGAS VELASQUEZ WOLFAN STICK RINCON

Lic. Fabian Lugo

COORPORACION UNIVERSITARIA DEL META PROCESOS INDUSTRIALES QUINTO SEMESTRE VILLAVICENCIO 2014


ORO 1- Proceso industrial

Exploración

La exploración es la primera parte de un largo proceso. Consiste en ubicar zonas donde exista la presencia de minerales cuya explotación sea económicamente rentable.

Inicialmente se utilizan reportes satelitales para determinar zonas mineralizadas en los lugares a explorar. Después, los geólogos recogen muestras (rocas) del suelo para conocer los elementos y minerales que las conforman. Si los análisis dan resultados positivos se procede con la perforación: se sacan muestras de diferentes profundidades (testigos) para determinar tipo, cantidad, profundidad y otras características del mineral. Finalmente se investiga y determina cuánto mineral existe en la zona.


Todas estas investigaciones se realizan siempre previa autorización de la autoridad competente y de los pobladores de las zonas a explorar.

Pre minado

Antes de iniciar el trabajo de explotación en sí, es necesario retirar del terreno la capa superficial de tierra orgánica (top soil) que permite el crecimiento de vegetación en la superficie. Esto se hace con equipo pequeño, y deja las condiciones para que en la etapa de minado se pueda explotar con equipo gigante.

Esta capa se almacena en áreas especiales para ser utilizada posteriormente en los trabajos de restauración del terreno o cierre de mina, el que ya se viene ejecutando en aquellas zonas donde ya se dejó de explotar. El trabajo es realizado con equipo y mando de obra local.

Minado

Consiste en la extracción del material que contiene oro y plata. Se inicia con la perforación del terreno, para hacer unos agujeros que luego son llenados con material explosivo. Estos, al detonar, fragmentan la roca y remueven subterráneamente el material exponiéndolo a la superficie. En esta etapa se aplican los más altos estándares de cuidado en seguridad.


CarguĂ­o y acarreo


Las explosiones que se realizan y la posterior remoción de tierra empiezan a formar grandes huecos en la tierra llamados tajos. Camiones gigantes (que pueden cargar hasta 250 toneladas de tierra) llevan el mineral extraído del tajo a la pila de lixiviación (o PAD), que es la estructura donde se acumula el mineral extraído del cerro para ser lixiviado y así recuperar el oro existente.

Todos los camiones y las palas están controlados a través de un sistema computarizado que permite conocer por satélite su ubicación exacta en todo momento.

La obtención del oro

Proceso de lixiviación en pilas


La pila o PAD de lixiviación es una estructura a manera de pirámide escalonada donde se acumula el mineral extraído. A este material se le aplica, a través de un sistema de goteo, una solución cianurada de 50 miligramos por litro de agua, la cual disuelve el oro. Mediante un sistema de tuberías colocadas en la base del PAD, la solución disuelta de oro y cianuro – llamada solución rica – pasa a una poza de lixiviación o procesos, desde donde se bombea hacia la planta de procesos.

La base del PAD está recubierta por una geomembrana, que es un material plástico de alta resistencia que impide el contacto de los químicos con el suelo, cuidando la calidad del agua.

Proceso Gold Mill


Mediante la planta de procesamiento de minerales Gold Mill (Molino de Oro) se busca procesar el metal que no puede ser obtenido mediante la lixiviado en pilas. El oro se recupera en 24 horas, a diferencia del proceso de lixiviación en pilas que dura casi 60 días.

La construcción del Gold Mill se inició a mediados del 2006 y concluyó a principios del 2008, con una inversión de 270 millones de dólares y un plan de producción de 9 años. 1500 trabajadores participaron en la construcción de esta importante obra que tiene una capacidad de procesamiento de 5,000,000 ton/año.

Procesos de planta

Columnas de Carbón


Proceso que permite concentrar la cantidad de oro que hay en la solución rica, para luego recuperarlo en el proceso Merrill Crowe, el cual se da en dos etapas. La primera es la etapa de desorción, en la que haciendo circular una solución cianurada, se saca el oro atrapado en la superficie del carbón activado. La segunda etapa es la de adsorción; en ella se pasa la solución rica (con el oro en estado líquido) a través de columnas cargadas con carbón activado, para que el oro sea atrapado en los poros del carbón.

Merrill Crowe

La solución rica en oro y plata es filtrada y limpiada. Luego se le elimina el oxígeno y se añade polvo de zinc para precipitar el metal y hacerlo sólido. El producto del Merril Crowe es el que luego pasa al proceso de Refinería.

La solución pobre, sin oro, es llamada también Barren. Esta es enviada de nuevo al PAD, pasando antes por un tanque para agregarle el cianuro que se consumió durante el proceso. De esta manera se completa un circuito cerrado


donde la solución utilizada no sale al medio ambiente, sino que se reutiliza constantemente.

Refinería

El oro obtenido en el proceso Merrill Crowe es sometido a operaciones de secado en hornos de retortas a 650º C. Finalmente, el producto obtenido pasa por un proceso de fundición en horno de arco eléctrico a 1,200º C para obtener el Doré, que es una barra hecha de una mezcla de oro y plata.


2- Flujograma

EXPLORACION

PREMINADO

MINADO

CARGUI Y ACARREO

PROCESOS DE PLANTA

PROCESO GOLD MILL

LIXIVIACION EN PILAS

OBTENCION DEL ORO


COLUMNAS DE CARBON

MERRILL CROWE

REFINERIA

3- Impactos positivos y negativos

Minería •

Destrucción irreversible en el área de explotación de ambientes nativos, y de su biota, o sea, del conjunto de especies de plantas, animales y otros organismos que ocupan esta área.

Interrupción en los flujos de especies entre ambientes nativos.

Alteraciones paisajísticas de envergadura.

Alteración de cuencas hídricas superficiales y subterráneas.

Disminución en los caudales de agua disponible.

Contaminación del aire con partículas, gases y ruidos molestos.

Accidentes durante el transporte y uso de explosivos.

Generación de depósitos de residuos mineros.

Lixiviación


Posibilidades de pérdida de cianuro y residuos contaminados con cianuro a través de geomembranas o forros. Si las geomembranas no existen el impacto será muy serio.

Contaminación del aire con vapores de las sustancias químicas utilizadas.

Contaminación del suelo y de aguas superficiales y subterráneas con filtraciones y residuos peligrosos de sistemas de conducción y de almacenamiento.

Accidentes durante el transporte de sustancias peligrosas y derrames en el área de lixiviación.

Alteraciones severas del paisaje.

Afectación de la biota y de las personas que trabajan en el área de lixiviación.

Recuperación •

Posibilidades de contaminación del suelo y de aguas superficiales y subterráneas con residuos de metales pesados y otras sustancias peligrosas.

Contaminación del aire con vapores de las sustancias químicas que se utilizan en la recuperación.

Accidentes durante el transporte de sustancias peligrosas y derrames en el área de recuperación.

Alteraciones severas del paisaje.

Afectación de la biota y de las personas que trabajan en el área de recuperación.

4- Subproductos


Plata,

PLATA

1- Proceso industrial

El proceso de plateado consiste en la electro-deposición de plata metálica sobre una superficie que puede ser metálica o no metálica, Los recubrimientos de plata mate, necesitan de un posterior abrillantado, es muy utilizado en la industria alimenticia, contactos eléctricos para interruptores, fabricación de reflectores, etc.

PROCESO POR AMALGAMACIÓN En esencia se trataba de aprovechar al máximo la solubilidad de la plata en el mercurio, mediante la mezcla de su mineral impregnado en agua, sal común, un cuerpo llamado magistral y mercurio, para obtener una amalgama que se disociaba finalmente por acción del calor. Se desarrollaba en cuatro etapas esenciales (amalgamación):

1ª ETAPA: Molienda de la menas de plata con mazos o morteros, completada habitualmente con la pulverización en molinos y el amasado de la masa molida, previamente humedecidas, en caballerías.2ª ETAPA: Mezcla de la masa con sal, mercurio y el llamado “magistral”, generalmente consistente en piritas de cobre tostadas, en tortas extendidas sobre el piso enlosado de un patio abierto o cobertizo.3ª ETAPA: Lavado con agua del material en tinas provistas de un molinillo agitador para separar la amalgama de plata.4ª ETAPA: Por último, desazogado o destilación de la amalgama, que dejaba la plata libre.La 1ª etapa era de gran importancia; cuanto mas fino era el mineral, mayor era la


superficie de las partículas de sales de plata expuestas al contacto con el mercurio y mas rápidamente se producía el proceso químico de la amalgamación, lo que generaba la necesidad de importantes instalaciones de molienda.En la 2ª etapa, el uso del magistral es un descubrimiento posterior a 1554; se trataba, de piritas de cobre, es decir, sulfitos de este metal o mas generalmente una mezcla de piritas de hierro y cobre, que actuaba como catalizador indispensable que permitía con mayor facilidad la amalgamación de la plata con el mercurio y que se descubrió ante la dificultad de extraer la plata contenida en determinados minerales con presencia antimonial.Una vez descubierto su uso, se empleo en todos los minerales de plata indistintamente, fuera cual fuera la composición del mineral base. La 3ª etapa, aunque denominada “lavado”, debiese ser llamada mas exactamente “flotación”, ya que se trataba de un proceso destinado a separar, basándose en sus diferentes pesos, las partículas mas pesadas, las de la amalgama de plata y mercurio, que por tanto se iba al fondo, mientras que la materia mas ligera de la torta, formada una capa delgada de lodo recibía el nombre de “lama”.Evidentemente en esta operación se perdía una cierta cantidad de lama y para recobrarla se hacia pasar el desperdicio por unas artesas de sedimentación.En la última etapa, la masa amalgamada se comprimía hasta tomar forma de piña, nombre que en efecto recibía, y mediante aplicación de calor, el mercurio se vaporizaba y se recogía en una especie de capucha de metal llamada “capellina”, desde la que por enfriamiento resbalaba y era recogido en la base.La plata que quedaba en la piña era casi totalmente pura y se sometía luego a fusión con el fin de darle una forma comercial de barra con un peso fino de aproximadamente 130 marcos.

EXTRACCION DE MINAS


Extracción: En los laboríos se prepara, ya sea el frente o cielo, así como los rebajes para realizar la tronada (dinamitar) esto se realiza por medio de barrenos hechos por la perforadora, con la finalidad de depositar uno o más cartuchos de un explosivo plástico, este va conectado a una mecha la cual recibe el nombre de "termalita", que en sus extremos se le coloca unas terminales conocidas como cápsulas, uno que permite encender la mecha y el otro que detona el explosivo. Posteriormente de la tronada, el material que se acumula es cargado por medio de la pala neumática en los carros de góndola, trasladándolo a los depósitos denominados alcancías que son contenedores de almacenamiento de carga para después ser transportado por el manteo.

Cribado y quebrado de material: Por medio del manteo general se canaliza el material al área de quebradoras, en donde por medio de maquinaria conocida como quebradores primarios se reducen las piedras de gran volumen a medidas inferiores, clasificándose en las cribas (equipos semejantes a una coladera doméstica), para seguir a los quebradores secundarios o ser reciclados a los primarios, una vez que se obtiene la medida óptima del material, por medio de unas bandas es transportada a la molienda.

Muestreo: Este paso es intermedio y paralelo entre el cribado y molienda, ya que aquí se realizan los muestreos de las cargas para determinar la ley (grado de pureza y cantidad de plata y oro por carga) de material de proceso.


Molienda: Una vez quebrado el material, por medio de las bandas alimentadoras, llega el material a los molinos de mineral, éstos grandes cilindros constituidos por lianas de acero al molibdeno sujetadas en su pared por medio de tortillería permiten que por medio de las bolas de acero que giran en el interior del molino (el cual tiene un movimiento rotatorio) el material sea molido para convertirlo en lodo, ya que se le alimenta agua constantemente al interior del molino, saliendo a través del "trunions" (o salida del molino) para que por medio de canales sea enviado al siguiente proceso.Cianuración: El material ya molido pasa a los tanques, en los cuales por medio de un impulso de rastrillo, el cual siempre está en movimiento (algo parecido al impulsor de una lavadora doméstica) añadiendo cianuro para iniciar el proceso de beneficio de oro y plata, por medio de este sistema de agitación y cianuración una mezcla homogénea que se envía a la plata de flotación.

Flotación: Aquí se recolecta las primeras espumas que se obtienen del proceso de cianuración, por medio de celdas contenedoras (tanque de lámina de acero) y de impulsores giratorios (éstos a unas revoluciones de giro considerablemente alta) hacen que las partículas de oro y plata se separen de la tierra y piedra molida para flotar en la espuma, que es derramada en unos conductos laterales de los tanques, estas espumas son enviadas por medio de bombeo al área de fundición y los deshechos también se envían por medio de bombas para ser almacenadas en los terrenos que se encuentran en las afueras de la ciudad conocidos como los "jales", que reciben este nombre dado que el deshecho de los procesos se llama tierra de "jal".

Fundición: Recolectan las espumas enviadas por parte de flotación, colocándose en unos sacos de lona, los cuales se encuentran en el interior de las prensas "Merick", para que sean compactadas y solidificadas por medio de presión, una vez extraídos, por un lado la humedad (agua cianurada) y por otro los lodos anódicos, se procede a depositar en los moldes para la fundición de los mismos. La fundición se realiza en hornos cuyo combustible es el diesel o petrolato (éste último también derivado del petróleo similar al diesel pero más impuro).


En este proceso se le agrega a los lodos las ropas de deshecho de los trabajadores de las áreas de fundición y refinería (esto se realiza según las políticas de la empresa para evitar a toda costa las mermas de los metales preciosos) trozos de vidrio, madera, bórax entre otros, con el fin de que durante el proceso de fundición se limpien los metales obteniendo placas anódicas para el proceso de refinado. Refinería: Una vez recibidas las placas anódicas de plata, se depositan en las tinas electrolíticas, que por medio de químicos y electricidad se desintegran las placas convirtiéndose en cristales de plata y oro, este material en esa presentación se le llama granalla de plata y oro, el cual es transportado a los hornos para fundir el material, los hornos empleados en este proceso son eléctricos para evitar contaminantes al ecosistema y para evitar perdidas por volatilidad de los minerales a fundir. Ya fundida la plata se deposita en las lingoteras giratorias, esto es una plancha en forma de disco que gira en forma horizontal en torno al horno.

2- Fujograma


3- Impactos positivos y negativos

Durante la fase de EXPLOTACIÓN, los impactos que se producen están en función del método utilizado. Según diversos autores (Vaughan (op. cit.), Salinas (op. cit.), Elizondo (1994)), los principales impactos ambientales causados por la minería a cielo abierto (MCA) en su fase de explotación son los siguientes:

Afectación de la superficie.

Afectación del entorno en general.

Contaminación del aire.

Afectación de las aguas superficiales.

Afectación de las aguas subterráneas o freáticas.

Afectación de los suelos.

Impacto sobre la flora.

Impacto sobre la fauna.

Impacto sobre las poblaciones.

Cambios en el microclima.

Impacto escénico posterior a la explotación.

4- Subproductos

CARBON


1- Proceso industrial

La obtención de minerales industriales requiere de una serie de operaciones dentro de las actividades mineras metalúrgicas como los son: extracción, seguridad, producción entre otros. Los procedimientos de extracción de un mineral, hablando específicamente del carbón, los impone las características del manto carbonífero. Las operaciones mineras para la extracción del carbón se dividen en dos grupos: de superficie y subterráneas. Los procedimientos de superficie suelen ser los más económicos, están determinados por el volumen del mineral, su riqueza, la extensión del depósito y la profundidad del carbón. Un procedimiento de superficie es la explotación a cielo abierto conocido como Tajo a Cielo Abierto en la Región Carbonífera. Para trabajar en la extracción del carbón, es necesario realizar una concesión a la Secretaría de Minas, la cual se encarga de realizar estudios, para saber si los terrenos denunciados están libres, una vez realizados dichos estudios se otorga a la persona denunciante un Título de Propiedad de terreno. Con éste título, el interesado puede iniciar los trabajos en su propio terreno.

El área para trabajar en un Tajo a Cielo Abierto deben encontrarse retiradas de las casas habitación, vías férreas, instalaciones de electricidad entre otros, debido a que en algunas ocasiones es necesario el uso de explosivos, siendo peligroso si algunos de éstos factores se encuentran cerca del área de trabajo. Las formas de llegar al manto de carbón se puede hacer con ayuda de maquinaria pesada o bien el uso de explosivos con el fín de hacer que la tierra esté más suave, y llegar con facilidad a donde se encuentra el carbón. Un tajo cuenta con tres mantos de carbón, el primer manto de carbón se encuentra aproximadamente a 20 metros de profundidad, posteriormente se continúa escarbando otros 20 metros y se encuentra el segundo manto de carbón; el tercer manto de carbón se localiza aproximadamente a la misma profundidad. Los mantos son de entre 5 y 8 pies de altura, las áreas de trabajo para tajos son en relación de 2


hectáreas, llegándose a extraer un promedio de 25,000 toneladas de carbón.

En la explotación cielo abierto, se forma hondonadas bajo el nivel de la superficie, por medio de barrenos se determina la profundidad del carbón, con una máquina bulldozer se excava el terreno y con una pala mecánica o cargador frontal se retira la tierra hasta llegar al manto carbonífero; una vez encontrado, se comprueba la calidad del mismo y se inicia el proceso de explotación. A medida que avanza la extracción del carbón y aumenta la profundidad, se tiene que extender los lados del tajo hacia afuera, a fin de aumentar la seguridad y evitar posibles desprendimientos de rocas y tierras. La Máquina denominada Bulldozer es utilizada para remover la tierra o el carbón con el fin de que el cargador frontal o pala mecánica, ahorre tiempo en transportarse hasta el lugar dónde se encuentran la tierra y el carbón. El bulldozer se encarga de acercar la tierra hasta donde se encuentran la pala mecánica y el yukle, con el fin de que la pala mecánica no pierda tiempo en ir hasta donde se encuentra la tierra, así sólo carga el cucharón de tierra y lo vacía al yukle.

Yukle, camión utilizado para transportar la tierra o carbón a la superficie terrestre. Tiene una capacidad aproximada de 25 toneladas de tierra y 17 toneladas de carbón. La tierra se debe depositar en un lugar cercano, puesto que al terminarse el área de trabajo, se tiene que tapar el tajo. El Cargador Frontal o Pala Mecánica es utilizada para realizar la excavación de la tierra hasta llegar al tajo, para vaciar la tierra o carbón a los yukles y en días de carga para llenar de carbón los camiones de


carga. Cuando la pala mecánica desprende la tierra, se forma poco el Tajo, hasta llegar al manto de carbón.

Otro de los procedimientos utilizados para la extracción del carbón, es el subterráneo, dentro del mismo se dan dos tipos: el Tiro Vertical o Pocito y las llamadas Minas de Arrastre o Pocitos Inclinados. Las obras verticales o pocitos, son excavaciones de entre 25 y 30 metros de profundidad, donde se abre un cañón dentro del cual se extrae el carbón por medio de un malacate: éste consiste en un motor con un cable al que se adapta un bote y en él es llevado el carbón a la superficie, sin emplear ningún tipo de ventilador.


El proceso denominado Minas de Arrastre o pocitos inclinados, son el segundo tipo de extracción subterránea; se hace una perforación en una inclinación de 20° aproximadamente y de una profundidad de entre 800 y 1,000 metros; se abren galerías horizontales; cañones o tiros como se les conoce , paralelas a la capa de carbón. Donde los techos de las galerías son sostenidos por vigas para evitar derrumbamientos. El carbón es desprendido con máquinas cortadoras, picas neumáticas y en algunos casos hasta con picas de mano; cuando el carbón se desprende con máquinas cortadoras, éstas lo cargan para luego depositarlo en bandas transportadoras que lo llevan a la superficie.

2- Flujograma


3- Impactos positivos y negativos

Alteraciones terrestres

Hundimiento de explotaciones

Polución del agua

Polvo y contaminación acústica

Rehabilitación

Efectos en la atmosfera al ser quemado

Liberación de SOx y NOx

Produce enfermedades: cardiacas, pulmonares y cerebrales.

4-

Subproductos

La gran mayoría de los carbones minerales se destinan a la producción de energía eléctrica en centrales térmicas se utilizó para producir gas para iluminar muchas ciudades También se utiliza como combustible para la producción de energía térmica en hornos, calefacciones, etc.

COBRE

1- Proceso industrial

El cobre aparece vinculado en su mayor parte a sulfurados, aunque también se lo encuentra asociado a oxidados. Estos dos tipos de mineral requieren de productivos diferentes, pero en ambos casos el punto de

minerales minerales procesos partida es


el mismo: la extracción del material desde la mina a tajo (rajo) abierto o subterránea que, en forma de roca, es transportado en camiones a la planta de chancado, para continuar allí el proceso productivo del cobre.

- Chancado: en la cual máquinas las rocas a un uniforme de de 1,2 cm.

etapa grandes reducen tamaño no más

- Molienda: grandes molinos continúan reduciendo el material, hasta llegar a unos 0,18 mm, con el que se forma una pulpa con agua y reactivos que es llevada a flotación, en donde se obtiene concentrado de cobre. En esta parte, el proceso del cobre puede tomar dos caminos: el de la fundición y electrorrefinación (etapas mostradas en esta infografía), o el de la lixiviación y electroobtención (ver infografía inferior).

- Fundición: para separar del concentrado de cobre otros minerales (fierro, azufre y sílice) e impurezas, este es tratado a elevadas temperaturas en hornos especiales. Aquí se obtiene cobre RAF, el que es moldeado en placas llamadas ánodos, que van a electrorrefinación.


- Lixiviación: es un proceso hidrometalúrgico, que permite obtener el cobre de los minerales oxidados que lo contienen, aplicando una mezcla de ácido sulfúrico y agua.

- Electrorrefinación: los ánodos provenientes de la fundición se llevan a celdas electrolíticas para su refinación. De este proceso se obtienen cátodos de alta pureza o cátodos electrolíticos, de 99,99% de cobre.

- Electroobtención: consiste en una electrólisis mediante la cual se recupera el cobre de la solución proveniente de la lixiviación, obteniéndose cátodos de alta pureza.

- Cátodos: obtenidos del proceso de electrorrefinación y de electroobtención, son sometidos a procesos de revisión de calidad y luego seleccionados, pesados y apilados.

- Despacho y transporte: los cátodos son despachados en trenes o camiones hacia los puertos de embarque y desde ahí, a los principales mercados compradores.

Formas de extracción

Cobre La extracción de cobre se puede hacer desde una mina a tajo (rajo) abierto o subterránea. La extracción subterránea: se realiza cuando un yacimiento presenta una cubierta de material estéril muy espesa, lo que hace que la extracción desde la superficie sea muy poco rentable. Para


ello se realizan distintos tipos de faenas bajo el suelo, las que pueden ser horizontales en túneles o galerías, verticales en piques o inclinadas en rampas.

La extracción a rajo abierto: se hace cuando una mina presenta una forma regular y el mineral está ubicado en la superficie y el material estéril que lo cubre pueda ser retirado con facilidad. Un rajo se construye con un determinado ángulo de talud, con bancos y bermas en las que se realizan las tronaduras (detonaciones), de donde sale el material que luego será transportado por estas mismas vías en grandes camiones.


2- Flujograma

CHANCADO

MOLIENDA

FUNDICIÓN

LIXIVIACIÓN

ELECTRORREFINACIÓN

ELECTROOBTENCIÓN

CATODOS

DESPACHO Y TRANSPORTE


Manufactura

del

cobre


3- Impactos positivos y negativos

El cobre nunca ha sido más importante para el crecimiento sostenible de la sociedad moderna. Los productos a base de cobre mejoran la eficiencia económica y el comportamiento medioambiental de múltiples aplicaciones en los sectores energéticos, de asistencia médica, de IT, industriales, de transporte y de la construcción.

4- Subproductos:

Alambrón

Alambre de cobre desnudo

Trefilado

Tubos

Sulfato de níquel

Yeso

LADRILLO


1- Proceso industrial

Los ladrillos existen desde mucho tiempo atrás pero su uso ha ido cambiando, hasta convertirse en una de las industrias más productivas y por tanto la forma de fabricación de ladrillos se ha hecho más práctica hoy en día y existe en todo el mundo. No hay complicaciones en convertir la arcilla conformada por sílice, agua, alúmina, oxido de hierro y magnesio así como de calcio y otros materiales alcalinos en un ladrillo. La fabricación de estos sigue etapas que enseguida comentamos.

La arcilla es el material básico del ladrillo, debido a que cuando se humedece se convierte en una masa fácil de manejar y se moldea muy fácilmente, por lo que para proceder a fabricar ladrillos, hay que humedecer bien la arcilla. Ya manejable se moldea y para endurecerla y convertirla en ladrillo se procede por el método de secado, éste es de los más antiguos o por cocción que resulta más rápido. Como pierde agua su tamaño se reduce pero muy poco, alrededor de un 5%. El proceso de fabricación de los ladrillos conlleva:


Etapa de maduración: Es cuando se procede a triturar la arcilla, se homogeniza y se deja un cierto tiempo en reposo para que así la misma obtenga consistencia uniforme y se pueda adquirir ladrillos con el tamaño y consistencia que se desea. Se deja que repose expuesta a los elementos para que desprenda terrones y disuelva nódulos, así como que se deshaga de las materias orgánicas que pueda contener y se torne puro para su manipulación en la fabricación.

Etapa de tratamiento mecánico previo: Concluido el proceso de maduración, la arcilla entra la etapa de pre-elaboración, para purificar y refinar la arcilla, rompiendo los terrones existentes, eliminando las piedras que le quitan uniformidad, y convirtiendo la arcilla en material totalmente uniforme para su procesamiento.

Etapa de depósito de materia prima procesada, cuando ya se ha uniformado la arcilla se procede a colocarla en un silo techado, donde la misma se convertirá en un material homógeneo y listo para ser manipulado durante el proceso de fabricación.

Etapa de humidificación, sigue a la etapa de depósito que ha sufrido la arcilla, en esta fase se coloca en un laminador refinado al que seguirá una etapa de mezclador humedecedor donde se irá humidificando para obtener la consistencia de humedad ideal.

Etapa de moldeado, es cuando se procede a llevar la arcilla a través de una boquilla, que es una plancha perforada en forma del objeto que se quiere elaborar. El proceso se hace con vapor caliente


saturado a 130°C, lo que hace que el material se compacte y la humedad se vuelve más uniforme.

Etapa de secado, con esta etapa se procede a eliminar el agua que el material absorbió durante el moldeado, y se hace previo al cocimiento. Suele hacerse usando aire en el secadero controlando que el mismo no sufra cambios para que el material no se dañe.

Etapa de cocción: Esta etapa es la que se realiza en los hornos en forma de túnel, con temperaturas extremas de 90°C a 1000°C , y donde el material que se ha secado previamente se coloca por una entrada, en grupos para que se someta al proceso de cocimiento y sale por el otro extremo cuando ha completado el mismo. Durante el mismo se comprueba la resistencia que se ha logrado del material.

Etapa de almacenaje, cuando el producto se ha cocido y es resistente y llena las exigencias de calidad, se coloca en formaciones de paquetes sobre los denominados “pallets” que hcen fácil su traslado de un lugar a otro. Los mismos se van atando ya usando cintas metálicas o de plástico para que los mismos no corran riesgo de caerse y dañarse, y de esa manera es más fácil la manipulación porque pueden llevarse a los lugares de almacenamiento.

El almacenamiento es un punto importante dentro del proceso de fabricación de ladrillos, porque debe ser un lugar que los proteja de los elementos como el agua, el sol excesivo o la humedad extrema que podrían en alguna manera mermar su calidad. Además de que permita que los mismos puedan manipularse fácilmente, o sea trasladarse cuando hay que despacharlos o mover de lugar para inventariar y otras tareas.


Esta es una forma de procesamiento del ladrillo en forma industrial pero las etapas suponen las mismas para la fabricación de ladrillos artesanales o manuales que aunque de igual calidad en algunas ocasiones suelen ser irregulares en su forma, pero que igual cumplen las expectativas de construcción y durabilidad para usarlos en interiores y exteriores, y que se siguen usando en muchos países en vías de desarrollo porque luego del uso del adobe, que duraba menos y estaba menos apto para resistir los embates de los elementos, el ladrillo sigue siendo hoy en día uno de los materiales de construcción más utilizados en el mundo.


2- Flujograma


3- Impactos positivos y negativos

Deforestación, pues se usa la madera como materia prima

Desaparición de sumideros de dióxido de carbono

Aumento del calentamiento global

Es un producto con potencial de exportación

Genera empleos

4- Subproductos


Polvos de aceria

Arenas

Arcillas

Fangos

Lodos

Emisiones a la atmosfera

HIERRO

1- PROCESO INDUSTRIAL

El hierro es un elemento químico ,es el segundo más abundante en la tierra para la obtención del hierro se puede hacer mediante óxidos, la reducción de estos se realiza en un horno y se produce una reacción química donde se desprende el oxígeno y queda solo el hierro se le agregan minerales de hierro para que actúen como escorificante, el hierro fundido debe ser refinado en hornos básicos de oxígeno para hacer un acero fundido los principales minerales de donde se obtiene el hierro: hematita, magnetita, limonita, siderita se les prepara antes de introducirse al horno y se hace con un lavado, triturado y calibrado para la obtención del hierro el 90 % de los metales que se fabrican en el mundo es para este, para la producción de hierro son necesarios cuatro elementos básicos que son piedra caliza, coque, aire y mineral de hierro .


2- FLUJO GRAMA DEL HIERRO


3- IMPACTOS AMBIENTALES DEL HIERRO

Son muchas contaminantes los que se generan en la extracción de hierro, principalmente el ruido de las máquinas, el polvo y productos químicos que se usan para extraerlo, como sales de mercurio y ácidos que se desechan al aire libre a las aguas. La industria de acero es una de las más importantes en los países desarrollados y los que están en vías de desarrollo. En los últimos, esta industria, a menudo, constituye la piedra angular de todo el sector industrial. Su impacto económico tiene gran importancia, como fuente de trabajo, y como proveedor de los productos básicos requeridos por muchas otras industrias: construcción, maquinaria y equipos, y fabricación de vehículos de transporte y ferrocarriles. Durante la fabricación de hierro y acero se producen grandes cantidades de aguas servidas y emisiones atmosféricas. Si no es manejada adecuadamente, puede causar mucha degradación de la tierra, del agua y del aire.


4- SUB PRODUCTOS DEL HIERRO

Barras para molienda de minerales, Barras para hormigón Alambrón, Alambrón, Planchas gruesas, Laminados en caliente. , Laminados en frío., Acero para Tambores, Acero para Enlozado Vitreo, Acero para Estampado y Embutición, Acero Laminado en Frío sin recocer, Tubos soldados por arco sumergido.

ESMERALDA

1- PROCESO INDUSTRIAL

Las minas se encuentran ubicadas en la cordillera oriental, una zona de montaña con gran vegetación cuya forma de explotación predominante es la de excavación de largos túneles que atraviesan el interior de las montañas en busca de las vetas de esmeraldas, La minería se hace de dos maneras: un proceso llamado "a cielo abierto” que se utiliza muy poco debido a problemas ambientales, y el otro proceso es a través de túneles o socavones que van tras la vetas blancas de calcita potenciales de contener esmeraldas cristalizadas

2- FLUJOGRAMA

EXPLOTACION

REMOCION DE TIERRA


TALADRO

V

SOCABONES

LIMPIEZA

3- IMPACTOS

AMBIENTALES

MOLDEO Y VENTA

DEL

PROCESO

DE

LA

ESMERALDA

Se utilizaba la explotación a cielo abierto con explosivos y maquinaria pesada que permitía remover grandes cantidades de tierra y avanzar de forma rápida en busca de las zonas con la génesis para la formación de los cristales de esmeraldas, pero esta práctica con el paso de los años fue quedando atrás por el impacto ambiental que tenia sobre la región acabando con grandes extensiones de montañas y contaminados los ríos aledaños.

NÍQUEL

1- PROCESO INDUSTRIAL


El níquel es un elemento químico de número atómico 28 y su símbolo es Ni, situado en el grupo 10 de la tabla periódica de los elementos. El níquel aparece en forma de metal en los meteoritos junto con el hierro (formando las aleaciones kamacita y taenita) y se encuentra en el núcleo de la Tierra también junto al hierro e iridio, formando entre estos tres metales una aleación de estructura metálica. Combinado se encuentra en minerales diversos como garnierita, millerita, pentlandita y pirrotina El uso del níquel se remonta aproximadamente al siglo IV a.C., generalmente junto con el cobre, ya que aparece con frecuencia en los minerales de este metal. Bronces originarios de la actual Siria tienen contenidos de níquel superiores al 2%. Manuscritos chinos sugieren que el «cobre blanco» se utilizaba en Oriente hacia 1700 al 1400 a. C.; sin embargo, la facilidad de confundir las menas de níquel con las de plata induce a pensar que en realidad el uso del níquel fue posterior, hacia el siglo IV a. C. Los minerales que contienen níquel, como la niquelina, se han empleado para colorear el vidrio. En 1751 Axel Frederik Cronstedt, intentando extraer cobre de la niquelina, obtuvo un metal blanco que llamó níquel, ya que los mineros de Hartz atribuían al «viejo Nick» (el diablo) el que algunos minerales de cobre no se pudieran trabajar; y el metal responsable de ello resultó ser el descubierto por Cronstedt en la niquelina, o Kupfernickel, diablo del cobre, como se llama aún al mineral en idioma alemán. El níquel es el 28º elemento más común. Constituye el 0.008% de la corteza terrestre. Se supone que el núcleo de la Tierra contiene grandes cantidades de este elemento. El níquel no se encuentra en la naturaleza como mineral puro excepto en los meteoritos. Los minerales de níquel están ampliamente difundidos en pequeñas concentraciones; los yacimientos explotables deberían enriquecerse mediante procesos geoquímicos hasta un mínimo de 0,5% de contenido de Ni. Los nódulos de manganeso que se extraen de las


profundidades marinas contienen grandes cantidades de níquel. Los minerales de Ni más importantes son: la pirrotina o pirita magnética, la garnierita, la nicolita o niquelina, el níquel arsenical, y el níquel antimónico. Se obtiene mediante procesos muy diversos, según la naturaleza de la mena y los futuros usos. En algunos casos, las aleaciones níquelhierro que se obtienen como producto intermedio, se incorporan directamente a la fabricación de aceros. Cuando se parte de minerales sulfurosos, se los transforma primero en mata que luego se machaca y tritura; a partir de allí, mediante el proceso carbonílico, se obtiene primero el níquel tetracarbonilo y luego el níquel en polvo de alta pureza. Cuando se parte de óxidos, el metal se obtiene a través de procesos electrolíticos. El método de preparación del níquel depende de la composición de los minerales. Todos los métodos son complejos debido a la dificultad que entraña la separación de otros elementos de propiedades muy parecidas como hierro, cobre y cobalto presentes en los minerales. En el proceso electrolítico, el níquel se deposita en forma metálica pura después de que el cobre ha sido previamente eliminado por deposición con un electrolito y voltaje diferente. En el método Mond, el cobre es eliminado por disolución en ácido sulfúrico diluido, y el residuo de níquel se reduce a níquel metálico impuro. Se pasa monóxido de carbono sobre el níquel impuro, formándose níquel tetracarbonilo (Ni(CO)4), un gas volátil que se descompone calentando a 200°C, depositándose níquel metálico puro. Los minerales sulfurosos como la pentlandita y la pirrotita, se reducen comúnmente en un horno y se envían en forma de un sulfuro aglomerado de cobre y níquel a las refinerías, donde el níquel se separa por diversos procesos. Un proceso para la extracción de níquel a partir de un catalizador de níquel gastado comercial del tipo NiMo/g-alúmina; comprende: i) añadir un persulfato basado que tiene una concentración dentro del intervalo de 0,25-4% (peso/peso) junto con el catalizador de níquel conformado y fino en una disolución de ácido sulfúrico y agitar con un agitador magnético de aguja/vidrio y mantener la relación de sólido-líquido dentro del intervalo de 1/2- 1/10 (peso/volumen) ii)


mantener la temperatura de la suspensión obtenida en la etapa (i) dentro del intervalo de 40 a 100ºC durante un período de 0, 5 a 6 h, iii) permitir que la suspensión decante y a continuación filtrar la suspensión para obtener el licor de extracción que contiene níquel y alúmina como residuo sólido, iv) lavar el residuo sólido para retirar el licor atrapado y secar a 110-120ºC para obtener un subproducto con un elevado contenido de alúmina que proviene del catalizador de níquel gastado, v) purificar dicho licor de extracción mediante precipitación del hierro y de otras impurezas empleando cal y filtrar para obtener una disolución de sulfato de níquel puro, vi) cristalizar o precipitar los licores de extracción para obtener un cristal de sulfato de níquel o de hidróxido de níquel, vii) reducir el hidróxido de níquel para obtener polvo de metal de níquel u óxido de níquel. Existe un procedimiento para obtener metales a partir de un mineral o concentrado de mineral de cobalto y/o níquel arsenosulfurado y/o sulfurado, en el cual se hace reaccionar el mineral o concentrado de mineral de cobalto y/o níquel arsenosulfurado y/o sulfurado, con azufre o compuestos de arsénico que contienen azufre, para dar un producto de reacción que contiene CoS y/o NiS, y se disuelven del producto de reacción metales y tierras raras solubles.

2- FLUJO GRAMA


3- IMPACTOS

La exposición al níquel metal y sus compuestos solubles no debe superar los 0,05 mg/cm3 medidos en niveles de níquel equivalente para una exposición laboral de 8 horas diarias y 40 semanales. Los vapores y el polvo de sulfuro de níquel se sospecha que sean cancerígenos. El carbonilo de níquel (Ni(CO)4), generado durante el proceso de obtención del metal, es un gas extremadamente tóxico. Las personas sensibilizadas pueden manifestar alergias al níquel. La cantidad de níquel admisible en productos que puedan entrar en contacto con la piel está regulada en la Unión Europea; a pesar de ello, la revista Nature publicó en 2002 un artículo en el que investigadores afirmaban haber encontrado en monedas de 1 y 2 euros niveles superiores a los permitidos, se cree que debido a una reacción galvánica.

4- SUBPRODUCTOS U OTROS USOS DEL NÍQUEL


Aproximadamente el 65% del níquel consumido se emplea en la fabricación de acero inoxidable austenítico y otro 12% en superaleaciones de níquel. El restante 23% se reparte entre otras aleaciones, baterías recargables, catálisis, acuñación de moneda, recubrimientos metálicos y fundición. Las aleaciones níquel-cobre (monel) son muy resistentes a la corrosión, utilizándose en motores marinos e industria química. La aleación níquel-titanio (nitinol-55) presenta el fenómeno de efecto térmico de memoria (metales) y se usa en robótica, también existen aleaciones que presentan superplasticidad. Se emplea para la acuñación de monedas, a veces puro y, más a menudo, en aleaciones como el cuproníquel. El metal es la opción más económica para hacer oro blanco. El níquel, un metal blanco y de tonalidad mate y de tacto suave, es un metal que encuentra mucha facilidad para «blanquear» a otros metales. Esto se traduce en que un mínimo de 30% de níquel en masa puede dar una apariencia plateada a la aleación. Por ejemplo en aleaciones de cobre, incluso con un 40% en masa de zinc o aluminio el metal sigue teniendo una coloración dorada, mientras que con un sólo 30% de níquel en masa adquiere su característico tono blanco. Es posible encontrarlo en joyería actualmente, pero no se recomienda su uso, ya que es cancerígeno y altamente tóxico. El níquel ha sido vetado en numerosos estados, donde su uso se ve cada vez más reducido. Se halla sobre todo en piercings y joyería de acero inoxidable, donde suele representar alrededor del 13% en masa. Estos aceros no son peligrosos para la salud puesto que son inertes químicamente y no reaccionan. Sin embargo el uso de una joya enchapada en níquel (típico de las joyas de fantasía) sí puede presentar un riesgo serio de alergia o infección, pero ambos casos son raros.


MERCURIO

1- PROCESO

El mercurio o azogue o ☿ es un elemento químico de número atómico 80. Su nombre y símbolo (Hg) procede de hidrargirio, término hoy ya en desuso, que a su vez procede del latín hydrargyrum y de hydrargyrus, que a su vez proviene del griego hydrargyros (hydros = agua y argyros = plata). El nombre de Mercurio se le dio en honor al dios romano del mismo nombre, que era el mensajero de los dioses, y debido a la movilidad del mercurio se le comparó con este dios. Este proceso utiliza disoluciones concentradas del NaCl (salmuera). La celda de amalgama está constituida por un contenedor de acero alargado e inclinado por debajo del cual fluye una capa de mercurio que actúa de cátodo y absorbe el Na que se produce en la reacción: NaCl → Na + ½ Cl2 El cloro se produce en el ánodo que se puede ajustar en altura. La amalgama de Na que se obtiene se transfiere a un reactor donde se descompone, mediante hidrólisis con H2O, en Hg, NaOH (50%) e H2. Na(Hg) + H2O → NaOH + H2 + Hg Durante la electrólisis se dan las siguientes reacciones:


Reacción en el ánodo: Cl¯ → ½Cl2 +1e¯.............................Eº = 1.24 V

Reacción en el cátodo: xHg + Na+ + 1e¯ → NaHgx...........Eº = -1.66 V

Reacciones colaterales:

Cl2 + NaOH → NaOCl + NaCl + H2O (ánodo)

Cl2 +2e¯ → 2Cl¯ (cátodo)

ClO¯ + 2H+ + 2e¯ → H2O + Cl¯ (cátodo)

El rendimiento del proceso es del 94-97%. Una planta a gran escala produce de 50 a 300x103 ton del Cl2/año y de 56 a 340x103 ton de NaOH/año. Datos de la Celda Área del cátodo: 10 a 30 m2 Espesor de la capa de Hg: 3 mm [Na]Hg: 0.2 a 0.4% en peso 50-180 ánodos por celda Separación cátodo-ánodo: 3 mm Ánodo: grafito o Ti recubierto por metales del grupo del Pt. Sal procesada: 2 a 20 m3/h


Proceso de Diafragma En este proceso se emplean disoluciones acuosas de NaCl. Las celdas industriales de diafragma consisten en un depósito en el cual los ánodos se montan verticalmente y paralelos unos a otros. Los cátodos se sitúan entre los ánodos, son planos y de acero, recubiertos por fibras de asbesto impregnados con resinas flúororgánicas. La disolución salina entra en la celda, pasa a través del diafragma de asbesto y entra en la cámara catódica. El Cl2 que se produce en el ánodo sale por la parte superior mientras que el H2, NaOH y NaCl residual se producen en el cátodo y salen de la celda por el lateral. El diafragma de asbestos cumple dos funciones: a) Evitar la mezcla de H2 y Cl2.La estructura tan fina del material permite el paso de líquidos a través del mismo, pero impide el paso de las burbujas de gas. Un 4% del cloro (disuelto en la disolución) sí pasa a través del diafragma y se pierde en reacciones colaterales, disminuyendo el rendimiento b) Impedir la difusión de los iones OH¯ formados del cátodo al ánodo. La disolución que sale de la celda contiene un 12% de NaOH y un 15% de NaCl (en peso). La capacidad de una planta puede ser de hasta 360x103 ton de Cl2/año, y de hasta 410x103 ton de NaOH/año. Estas plantas consumen un 20% menos de energía que las plantas basadas en celdas de mercurio.

2- FLUJOGRAMA


3- IMPACTOS

Transporte Se transporta en estado líquido, código europeo del A.D.R.: 8, 66, c. Los contenedores deben cerrarse herméticamente. Se pueden emplear contenedores de acero, acero inoxidable, hierro, plásticos, vidrio, porcelana. Deben evitarse los contenedores de plomo, aluminio, cobre, estaño y zinc. Almacenar en áreas frías, secas, bien ventiladas, alejadas de la radiación solar y de fuentes de calor y/o ignición, ya que a temperaturas mayores de 40 °C produce vapor. Debe estar alejado de ácido nítrico concentrado, acetileno y cloro. Debe almacenarse en recipientes irrompibles de materiales resistentes a la corrosión y que sean compatibles.

Efectos en el organismo


El sistema nervioso es muy sensible a muchas de las formas de mercurio. El metilmercurio y los vapores de mercurio metálico son más nocivos que otras formas, ya que más mercurio llega al cerebro en estas formas. La exposición a altos niveles de mercurio metálico, inorgánico, u orgánico puede dañar permanentemente el cerebro, los riñones y al feto en desarrollo. Efectos sobre el funcionamiento del cerebro: irritabilidad, timidez, temblores, cambios en los problemas de visión o audición, y en la memoria. La exposición a corto plazo a altos niveles de vapores de mercurio puede causar efectos que incluyen daño a los pulmones, náuseas, vómitos, diarrea, aumento de la presión arterial o del ritmo cardíaco, erupciones en la piel, e irritación ocular. Ya que el mercurio y la mayor parte de sus compuestos son extremadamente tóxicos y son generalmente manejados con cuidado, en casos de derrames de mercurio (como el de algunos termómetros o tubos fluorescentes) los procedimientos específicos de limpieza se utilizan para evitar la exposición a sustancias tóxicas, en esencia, se recomienda combinar físicamente más gotas pequeñas sobre superficies duras, combinándolos en un solo grupo más grande para facilitar la extracción mediante el uso de un gotero, o empujando en un recipiente desechable. Las aspiradoras y escobas no deben ser utilizadas debido a que causan una mayor dispersión del mercurio. Posteriormente, el polvo de azufre, polvo de zinc, o algún otro elemento que forme fácilmente una amalgama (aleación) con el mercurio (por ejemplo, finamente dividido Cu o Bi) a temperaturas ordinarias se rocía sobre el área y posteriormente se recoge y se elimina correctamente. Una limpieza de superficies porosas y prendas de vestir no es eficaz para eliminar todos los rastros de mercurio y lo que es aconsejable es descartar este tipo de elementos que puedan haber estado expuestos a un derrame de mercurio. El mercurio puede ser inhalado y absorbido a través de la piel y las mucosas, por lo que los contenedores de mercurio deben estar bien sellados para evitar derrames y evaporación. El calentamiento de mercurio, o compuestos de mercurio que pueden descomponerse cuando se calientan, se realiza siempre con una ventilación adecuada para evitar la exposición a vapores de mercurio. Las


formas más tóxicas de mercurio son sus compuestos orgánicos, tales como dimetilmercurio y el metilmercurio. Sin embargo, los compuestos inorgánicos, como el cinabrio son también altamente tóxicos por ingestión o inhalación en polvo. El mercurio puede causar intoxicación aguda y crónica. La exposición ocupacional Debido a los efectos de salud de la exposición al mercurio, los usos industriales y comerciales se rigen en muchos países. La Organización Mundial de la Salud, OSHA y NIOSH ordenan que todo el mercurio se debe tratar como un riesgo laboral, y han establecido límites específicos de exposición ocupacional. Las emisiones al medio ambiente y eliminación del mercurio están reguladas en los EE.UU. principalmente por la Agencia de Protección Ambiental de los Estados Unidos. Estudios de casos y controles han mostrado efectos tales como temblores, deterioro de las habilidades cognitivas y trastornos del sueño en trabajadores con exposición crónica a vapores de mercurio, incluso a bajas concentraciones en el rango de 0.7 hasta 42 μg/m3. Un estudio ha demostrado que la exposición aguda (4-8 horas) para calcular los niveles de mercurio elemental de 1,1 a 44 mg / m 3 como resultado causa dolor en el pecho, disnea, tos, hemoptisis, alteración de la función pulmonar y síntomas de neumonitis intersticial por la exposición aguda al vapor de mercurio. Se ha demostrado para dar lugar a profundos efectos del sistema nervioso central, incluyendo reacciones psicóticas se caracteriza por el delirio, alucinaciones y tendencias suicidas. La exposición ocupacional ha dado lugar a trastornos funcionales de amplio alcance, incluyendo eretismo, irritabilidad, nerviosismo, timidez excesiva, y el insomnio. Con la exposición permanente, un temblor fino se desarrolla y puede escalar a violentos espasmos musculares. El temblor consiste en primer lugar las manos y luego se extiende a los párpados, los labios y la lengua. A largo plazo, la exposición de bajo nivel se ha asociado con síntomas más sutiles de eretismo, incluyendo la fatiga, irritabilidad, pérdida de memoria, sueños vívidos, y la depresión.


Pescado Los pescados y mariscos tienen una tendencia natural a concentrar el mercurio en sus cuerpos, a menudo en forma de metilmercurio, un compuesto orgánico de mercurio altamente tóxico. Las especies de peces que son altos en la cadena alimentaria, como el tiburón, pez espada, caballa, atún blanco, y blanquillo contienen mayores concentraciones de mercurio que otros. Como el mercurio y el metilmercurio son solubles en grasa, se acumulan principalmente en las vísceras, aunque también se encuentran en todo el tejido muscular. Cuando este pescado es consumido por un depredador, el nivel de mercurio se acumula. Dado que los peces son menos eficientes en la depuración que en la acumulación de metilmercurio, la concentración de mercurio de los tejidos aumenta con el tiempo. Así, las especies que están altas en la cadena alimentaria acumulan una carga corporal de mercurio que puede ser diez veces mayor que la de las especies que consumen. Este proceso se denomina biomagnificación. El envenenamiento por mercurio ocurrido de esta manera en Minamata, Japón, ahora se llama la Enfermedad de Minamata.

Cartilla procesos  
Read more
Read more
Similar to
Popular now
Just for you