Page 1

Le stimulus = la LUMIERE A la fin du XIXe siècle, James Maxwell définit la lumière comme étant un faisceau d'ondes électromagnétiques se déplaçant à vitesse constante dans le vide: la fameuse vitesse c de 300.000 kilomètres par seconde.

La lumière a aussi une définition corpusculaire ou quantique ce sont des électrons (photons) qui se déplacent. Elle est caractérisée par sa longueur d’onde (tonalité chromatique), sa pureté (saturation) et son intensité (luminosité). Les radiations à hautes fréquences ont le plus haut degré d’énergie (rayons γ et rayons X) De nombreuses espèces animales voient dans l’ultraviolet (abeille, libellule, python, oiseaux etc.), mais ne voient pas les longueurs d’ondes longues (rouge). L’infrarouge (serpents à sonnette) Les stimuli visuels sont des distributions spatiales et temporelles, de longueurs d’onde et de luminance (intensité).


NEUROPHYSIOLOGIE de la VISION Sensation: L’oeil focalise et capte l’image visuelle sur la rétine avec un minimum de déformation optique: Transduction: Les photorécepteurs captent les photons et transforment cette énergie par des mécanismes photochimiques en potentiels de récepteur (transduction) . Formation de l'image: Cortex visuel Traitement et analyse de l'image: Cerveau La rétine fait partie du système nerveux central, elle a la même organisation synaptique Les stimuli visuels sont des distributions spatiales et temporelles de longueurs d’onde et de luminance (intensité).


La rétine est accolée à l’épithélium pigmentaire dont les cellules sont remplies d’un pigment noir, la mélanine. Celui-ci absorbe tous les photons qui n’ont pas été captés par les photorécepteurs.


Les vaisseaux et les couches cellulaires sont déplacés en sorte que les rayons lumineux ne subissent qu’une diffusion minimale avant d’atteindre les segments externes des cones du centre de la fovéa, désigné sous le nom de fovéola.

Le maximum de sensibilité en vision scotopique est situé à environ 20° de l'axe optique : La performance des cônes est supérieure à celle des bâtonnets dans toutes les tâches visuelles sauf pour la détection des stimuli peu lumineux. vision via les cône est de meilleure acuité et apporte une meilleure résolution dans les changements rapides de la scène visuelle. Les cônes sont également sensibles aux couleurs, alors que le système des bâtonnets est achromatique. Les bâtonnets, très sensibles à la lumière, assurent la vision nocturne ou en lumière atténuée. En vision scotopique (bâtonnets) nous ne percevons pas les couleurs.


Une chaine de 3 neurones (photorécepteur, cell. bipolaire, cell. ganglionnaire) Constitue la voie la plus directe (pas de convergence) pour transmettre les informations visuelles au cerveau.

Les cellules horizontales et les cellules amacrines interviennent dans des interactions latérales au niveau des couches plexiforme externes et plexiforme interne respectivement. NB. Interne: près du centre de l’oeil


Le potentiel des photorécepteurs et des cellules Bipolaires 1-Ces deux types de neurones ne mettent que des potentiels gradués, Les potentiels d’action ne sont pas nécessaires pour transmettre les informations sur des distances aussi courtes. 2- la lumière qui éclaire un photorécepteur, cône ou bâtonnet, produit une hyperpolarisation et non une dépolarisation de ce photorécepteur. Enregistrement intracellulaire d'un cône isolé recevant des stimulations lumineuse de différentes intensités (cônes de la rétine de tortue ce qui explique le décours temporel relativement long de la réponse). Chaque trace représente la réponse à un bref éclair (flash) dont on a fait varier l’intensité. Aux intensités lumineuses les plus grandes, l’amplitude de la réponse sature (à environ -65 mV). La réponse hyperpolarisante est caractéristique des photorécepteurs des vertébrés. Curieusement, certains récepteurs d’invertébrés répondent à la lumière par une dépolarisation. (Après Schnapf et Baylor, 1987.)


À l’obscurité, la quantité du GMPc augmente, ainsi les bâtonnets, comme les cônes, se dépolarisent. Inversement, quand la lumière est présente, la concentration du GMPc diminue et les photorécepteurs se hyeprpolarisent.

À l’obscurité les photrécepteurs (cones et batonnets) sont relativement dépolarisés et libèrent du neurotransmetteur À la lumières, Ils sont hyperpolarisés et ne libérent pas de neurotransmetteur


Phototransduction au niveau des bâtonnets et des cones

des bâtonnets

À la lumière, - le rétinol passe de la forme cis à la forme trans, ceci stimule la rhodopsine. La stimulation de la rhodopsine ,dans les disques du récepteur, par la lumière active une protéine G, la transducine - La protéine G (transducine) activée active la PDE - La PDE hydrolyse le GMPc, ce qui réduit sa concentration , - Ceci entraine la fermeture des canaux sodium dans le segment externe du récepteur et une hyperpolarisation


Dans la lumière, comme le cis rétinal est converti au trans rétinal, les canaux du Na commencent à se refermer et la production du neurotransmetteur diminue. Si le seuil est atteint, les cellules bipolaires seront hypolarisés et elles produiront une impulsion qui est transmise aux cellules ganglionnaires et ensuite vers le cerveau. Dans l’oscurité les canaux sodiques sont ouverts, cela se traduit par un courent Na entrant qui peut causer la dépolarisation du bâtonnet et il libère du neurotransmetteur. Cependant, la synapse avec les cellules bipolaires est une synapse inhibitrice, le NT arrête les Impulsions vers les cellules ganglionnaires.


Distribution des photorécepteurs dans la rétine Humaine

Les cones sont présent dans toute la rétine avec une densité faible (6 millions) , qui augmente brusquement au niveau de la fovéa. À l’inverse, les bâtonnets sont présents dans toute la rétine avec une densité élevée (120 millions). La partie supérieure du schéma illustre l’aspect de sections transversales Réalisées au niveau des segments externes des photorécepteurs, à différents degrés d’excentricité. L’augmentation de la densité des cônes dans la fovéa s’accompagne d’une réduction marquée du diamètre De leur segment externe.


Différents types de récepteurs Absorption relative des différentes longueurs d’onde M: medium S: short L: long

- 6 millions de cônes : la densité est maximale au centre de la fovéa, vision photopique, trois types de pigments -120 millions de bâtonnets absents de la fovéa densité maximum ≈ 20° un seul pigment : rhodopsine

Mélanges soustractifs (surfaces) Une surface absorbe certaines longueurs d’onde et en réfléchit d’autre : sa couleur apparente correspond aux longueurs d’onde réfléchies Avec ces couleurs de base on peut avoir toutes les autres couleurs. La perception des couleurs intermédiaires fait intermédiaires activent les 3 types de cônes: Cyan, Magenta, Jaune


En vision photopique : dans la rétine il y a 6 millions de cônes et 1 millions de cellules ganglionnaires → compression La densité des photorécepteurs diminue avec l’excentricité rétinienne.

Schéma de la convergence

La convergence augmente avec l’excentricité rétinienne En conséquence, l’acuité visuelle diminue avec l’excentricité rétinienne L’acuité visuelle mesure le pouvoir de résolution spatiale

L’acuité, convergence et excentricité

Acuité visuelle

Il y a deux types de cellules ganglionnaires α et β


Champs visuel et champ récepteur A tous les étages du système visuel, chaque neurone est connecté à une population de récepteurs localisés dans la même région de la rétine : son champ récepteur. Lorsque cette région est stimulée par un petit flash lumineux, on provoque un changement de l’activité électrique du neurone.

Selon la position de la stimulation, la réponse est excitatrice (ON) ou inhibitrice (OFF). Les cellules ganglionnaires ont des champs récepteurs circulaires comprenant deux zones concentriques à activités antagonistes (ON/OFF ou OFF/ON)


ophtalmoscope

Enregistrement des décharges de potentiels d’action de deux cellules ganglionnaires

À centre ON

À centre OFF


Les champs récepteurs des cellules bipolaires ont une organisation Centre-Pourtour (antagoniste) Comme les cellules ganglionnaires, les cellules bipolaires ont des champs récepteurs avec des propriétés antagonistes centre-périphérie et ces cellules sont soit centre ON soit centre OFF. Lorsque les cônes au centre du champ récepteur sont illuminés, les cellules bipolaires centre ON sont dépolarisées, tandis que les cellules bipolaires centre OFF sont hyperpolarisées. Cellules bipolaires Une cellule bipolaire OFF se dépolarise quand les photorécepteurs qui font synapse avec elle sont dans le noir Une cellule bipolaire ON se dépolarise quand les photorécepteurs qui font synapse avec elle sont dans la lumière

Enregistrement des réponses de neurones corticaux sensibles à l'orientation (Neurosciences, Purves) On projette devant les yeux de l''animal une barre lumineuse d'orientation variable, durant une seconde (entre 1ère et 2ème seconde), et on enregistre les réponses électriques (potentiels d'action) de cellules corticales


+:conserve le signe -: inverse le signe AMPA, NMDA Kaïnate: Ionotropiques dépolarisants mGluR6: métabotropique, hyperpolarisant


Il ya deux types de cellules bipolaires: S (superficielles) et I (Invagination). Les Bip. I font parties de la voie ON (excitées par la lumière) et les Bip. S font partie de la voie OFF (excitées par l’obscurité).


La circuiterie du pourtour et role des cellules horizontales A. Petit spot de lumière projeté dans le centre du champ récepteur de la cell. ganglionnaire provoque: - réponse d’un seul cône - petite réponse cellulaire horizontale B. Large spot de lumière projeté au centre et alentour provoque -Des réponses multiples des cônes - Des grande réponse des cellules horizontales (plus hyperpolarisées) - Réduction de la libération du GABA par les cellules horizontales - les Cônes se dépolarisent, la libération de glutamate augmente - La cellules bipolaire ON se repolarisent - Cellules ganglionnaires ON cesse de décharger NB. Le signe + indique une conservation de signe et le signe – indique une inversion de signe


Fig. de la Diapositive 19: La cellule ganlionnaire ON est inhibée par l’éclairement du pourtour de son CR. L’éclairement d’un photorécepteur du centre du CR de la cellule ganlionnaire provoque une forte hyperpolarisation de ce récepteur. Dans ces condition le potentiel de membrane des cellules horizontales connectées au récepteur ne varie guère et la réponse du récepteur est en grande partie déterminée par la cascade de la phototransduction.

Si l’éclairement vient à déborder sur le pourtour, les influences qu’excercent le réseau des cellules horizontales se renforcent; la diminution de la libération du glutamate par les photorécepteurs du pourtour se traduirait par une forte hyperpolarisation des cellules horizontales dont les terminaisons se convergent vers le photorécepteur du centre. Comme les cellules Horizontales libèrent moins de GABA, ce récepteur se trouve dépolarisé et réduit sa réponse à l’éclairement, d’où résulte finalement une diminution de la fréquence de décharge de la cellule ganglionnaire à centre ON.


Les photorécepteurs émettent en permanence leur neurotransmetteur, du glutamate, en l’absence de lumière. Par conséquent, les récepteurs au glutamate des cellules bipolaires à centre OFF sont excitateurs, puisque l’absence de lumière doit les stimuler. De même, on constate que les récepteurs des cellules bipolaires à centre ON sont inhibiteurs, puisque la lumière qui frappe les photorécepteurs au centre de leur champ récepteur va les hyperpolariser et diminuer la relâche de glutamate. Moins de ce neurotransmetteur inhibiteur amènera donc une plus grande excitation du neurone bipolaire. C’est donc la nature excitatrice ou inhibitrice des récepteurs au glutamate qui détermine le type de champ récepteur des cellules bipolaires.


Les cellules bipolaires ne génèrent pas de potentiels d'action. Elles répondent à la libération de glutamate par les photorécepteurs avec des potentiels gradués (par hyperpolarisante ou dépolarisants). Elles diffèrent en fonction de leurs réponses à la stimulation des photorécepteurs. Il ya deux types de cellules bipolaires d'après leurs réponses au glutamate. Les cellules bipolaires OFF sont dépolarisées par le glutamate alors que les cellules ON sont hyperpolarisées. Les cellules bipolaires OFF ont comme fonction de détecter des objets sombres dans un fond plus clair. Le point sur les cellules bipolaires ON ont pour fonction de détecter des objets dans un fond plus sombre. Les cellules horizontales ont contacts présynaptiques (axone) avec un petit groupe de photorécepteurs et ont contacts postsynaptiques (dendritiques) recevant input d’un groupe plus important de cellules photoréceptrices du pourtour. L'effet pourtour, produite par les cellules horizontales, améliore les contrastes de luminosité pour produire des images plus nettes, de faire apparaître un objet lumineux ou plus sombre selon le contexte et pour maintenir ces contrastes dans les niveaux d'éclairage différents. Les cellules ganglionnaires. Chaque point de la surface rétinienne (chaque partie de l’espace visuel) est examiné par plusieurs cellules ON et OFF. Les cell. Ganglionnaires à centre ON détectent les stimuli plus clairs que leur fond, alors que les cellules OFF détectent les stimuli plus sombre que leur fond, d’où la notion de de deux canaux de luminance différent. Par conséquent tout changement, vers le bas ou vert le haut de la luminance, sera signalé au cerveau par une augmentation de la fréquence de décharge. Une augmentation de décharge serait un signal fiable par rapport à toute diminution (hypothétique) de la fréquence de décharge spontanée qui est déjà elle même est faible.


Pour nous rendre compte de la façon dont l’antagonisme centre-pourtour rend une cellule ganglionnaire plus sensible au contraste de luminance, considérons une population fictive de cellules ON stimulées par un faisceau lumineux (d'après Purves): •A ne répond pas car elle est dans l'obscurité. •B est inhibée car la lumière ne touche que son champ périphérique. •C est en partie stimulée •D est stimulée car toute sa zone centrale est activée alors qu'une partie seulement de sa zone périphérique l'est. • E est faiblement stimulée car toutes ses zones sont activées.

Les neurones dont la fréquence de décharge est le plus affectée (B et D) sont ceux qui ont le CR à la limite des parties claires et des parties sombres, c'est-à-dire, les parties soulignant les bords qui délimitent les formes. L’information que transmet la rétine ne donne donc pas le même poids à la scène visuelle, elle favorise les régions qui présentent un contraste de luminance A

B

C

D

E


Les mécanismes qui sous-tendent l’antagonisme centre-pourtour donne aux cellules gagnglionnaire une sensibilité Particulière aux frontières entre région clair et sombre mais ils contribuent aussi au processus d’adaptation à la lumière

Fréquence de décharge d’une cellule ganglionnaire à centre ON en fonction de l’intensité du stimulus (luminance) dans des niveaux d’éclairement du fond différent. Le niveau d’éclairement du fond est donnée par les chiffres rouges et 0 est le plus éclairé. La fréquence des décharges est proportionnelle À l’intensité du stimulus sur une éttendue d’une unité Logarithmique env., mais cette plage se déplace vers la droite quand Le niveau d’éclairement augmente. La fréquence du charge n’est pas une mesure absolue de l’intensité lumineuse; elle ne fait qu’indiquer la différence par rapport au niveau d’éclairement du fond.


Calcium et l’adaptation à l’exposition à la lumière prolongée. Lors d'illumination prolongée la fermeture des canaux GMPc-dépendants réduit l'afflux de Ca2 +. Ceci conduit à une lente diminution de la concentration du Ca2 + intracellulaire en raison de l'extrusion de Ca2 + continue. Le potentiel de membrane du cône récupère alors de son état d’hyperpolarisation parce que le Ca2+ inhibe la guanylyl cyclase, l'enzyme qui synthétise GMPc à partir du GTP. En conséquence, le GMPc augmente lentement. Il en résulte alors la réouverture des canaux cGMP-dépendants et, par conséquent, la dépolarisation lente du cône. La diminution de la concentration de Ca2 + semble accélèrer aussi l’inactivation des pigments visuels et diminue la sensibilité des canaux GMPc –dépendants aux changements de la concentration du GMPc .

-------------------------------------------------------------------------------Les cellules ganglionnaires sont de deux types, Type M (Magnocellulaire, grandes: α) et Type P (parvocellulaires, petites: β) , qui analysent l’information des différentes propriétés du stimulus

Réponse Phasique (passagère)

Réponse tonique (durable)


Types de cellules ganglionnaires Cellules ganglionnaires de type M: 5 % des cellules ganglionnaires Grands champs récepteurs Potentiel d’action rapide et bref Détection du mouvement Cellules ganglionnaires de type P 90% des cellules ganglionnaires Petits champs récepteurs concentriques Potentiel d’action tonique Sensible à la forme et aux détails Les cellules ganglionnaires du Type P sont détecteurs d'objets et sensibles à la couleur. 90 % . - Prennent contact synaptique avec un ou quelques cône de qui sont dans la fovéa - Produisent une réponse durable (tonique) et lente qui dure aussi longtemps que le stimulus est centrée sur son champ récepteur. - Produisent des réponses faibles à des stimuli qui traversent son champ réceptif (faible sensibilité à la fréquence temporelle). - Mieux adapté pour la signalisation de la présence, la couleur et la durée d'un stimulus visuel mais faible pouvoir de détecter le mouvement. Les cellules ganglionnaires du type M sont détecteurs du mouvement et insensibles à la couleur - Sont beaucoup plus grandes que les cellules ganglionnaires du type P - Font synapses avec de nombreux cellules bipolaires - Sont plus sensibles aux petites différences de luminosité du centre-pourtour - Produisent des réponses passagères (phasiques) à un stimulus maintenu (durable). - Répondent avec des taux de décharge élevé à des stimuli se déplaçant à travers leurs champs réceptifs. - Sont les mieux adaptées pour la signalisation des variations temporelles et du mouvement du stimulus. - La plupart des axones voyagent et atteignent le corps genouillé latéral (CGL).


Tableau récapitulatif RETINE CGL des trois systèmes M,P,K P parvosystème Naines (X), bêta, couches 3 à 6 B 80%

M magnosystème

K koniosystème

Parasols (Y), alpha, A 10%

couches 1 et 2

(W), gamma 10% interlaminaire

Physiologie

Fonction

petit champ récepteur bonne acuité sensible hautes fréquences spatiales et basses fréquences temporelles couleur lent (tonique)

assurerait la vision des détails et des couleurs

champ récepteur moyen acuité médiocre sensible basses fréquences saptiales et haute fréquences temporelles achromatique rapide (réponse phasique)

assurerait la vision du mouvement et du papillotement

grand champ récepteur couleur? réponses variées lent ou rapide

?


L’image visuelle est centrée sur la rétine est inversée du haut vers le haut et inversée de la droite vers la gauche Le centre du champ visuel est projette son image dans la zone fovéal de la rétine. L’acuité visuelle est spécialement élevées au niveau de cette région.


Projection du champ binoculaire de vue sur les deux rétines et sa relation à la traversée de fibres dans le chiasma optique. Points dans la partie binoculaire du champ visuel gauche (B) tombent sur la rétine nasale de l'œil gauche et la rétine temporale de l'œil droit. Points dans la partie binoculaire du champ visuel droit (C) tombent sur ​la rétine nasale de l'œil droit et la rétine temporale de l'œil gauche. Points qui se situent dans les portions des champs monoculaires visuels gauche et droit (A et D) tombent sur la rétine gauche et nasale droite, respectivement.

Les axones des cellules ganglionnaires de la rétine nasale sont croisées dans le chiasma optique, tandis que ceux de la rétine temporale ne le sont pas . En conséquence, l’information du champ visuel gauche est conduite dans le tractus optique droit, et l'information du champ visuel droit est conduite dans le tractus optique gauche.


Projection rétinofuge

Fibres des nerfs optiques se croisent dans le chiasma optique, l’hémichamp visuel gauche est perçu dans l’hémisphère droit, et vice et versa.


Voies rétinofuges

Effets des lésions a. Nerf optique gauche: rétines temporale et nasale gauches affectées; équivalent à fermer un œil; b. Tractus optique gauche: champ visuel droit de chaque œil affecté, soit rétine temporale gauche et la rétine nasale droite; c. Chiasma optique: rétines nasales droite et gauche affectées; vision périphérique à partir de chaque œil affectée.


Projections visuelles Nerf Optique

Chiasma Optique

Corps Genouillé latéral

Radiations Optiques

Tractus optique

Hypothalamus

Régulation des rythmes circadiens Prétectum

Contrôle réflexe de la pupille et de l’accommodation

Colliculus Supérieur

Mouvement visuel, orientation des yeux et de la tête Cortex visuel Primaire V1

Liens avec hypothalamus: rythmes biologiques; 10% des fibres du tractus vont au-delà du thalamus, innerver le mésencéphale; Majorité vont innerver les corps genouillés latéraux (CGL), dans la partie dorsale du thalamus; Les axones du CGL se projettent au niveau du cortex visuel primaire, dans le lobe occipitale;


Quelques axones des cellules ganglionnaires de la rétine se séparent du tractus optique pour rejoindre d’autres structures que le corps genouillé latéral, principal relais entre la rétine et le cortex visuel. C’est le cas de l’hypothalamus, et plus précisément de son noyau suprachiasmatique, qui reçoit un certain nombre de connexions des axones en provenance de la rétine. Le noyau suprachiasmatique est considéré comme le site majeur de notre horloge biologique interne. C’est pourquoi être informé en permanence de la clarté ou de l’obscurité ambiante lui permet de synchroniser toute une série de rythmes biologiques liés au cycle quotidien du jour et de la nuit, y Environ 10% des axones rétinofuges se projettent sur une partie du tectum (ou toit) du compris le sommeil et l’éveil. mésencéphale appelée colliculus supérieur (environ 150 000 axones rétiniens). À cause de la superposition des champs récepteurs dans la rétine, la projection d’un D’autres axones des cellules point lumineux sur celle-ci active une grande population de neurones du colliculus ganglionnaires de la rétine vont supérieur. Ces derniers provoquent des mouvements des yeux et de la tête, par également rejoindre le prétectum, l’intermédiaire de neurones moteurs du tronc cérébral, qui vont chercher à amener une partie du mésencéphale qui l’image du spot lumineux sur la fovéa. La voie rétinotectale est donc impliquée dans contrôle l’ouverture de la pupille l’orientation du regard quand l’œil est sollicité par un stimulus dans la périphérie du et certains mouvements des yeux. champ visuel.


Dominance oculaire

La grande majorité des axones du nerf optique finissent dans le noyau du corps genouillé latéral (CGL). Les axones des cellules ganglionnaires projettent aussi vers plusieurs d’autres régions du cerveau. Le CGL droit reçoit les information à partir du champ visuel gauche (coté nasal de la rétine gauche et temporal de la rétine droite), alors que le CGL gauche reçoit les information du champ visuel droit. Axones ipsilatéraux (droit) font synapse sur couches 2, 3 et 5; axones controlatéraux (gauche), sur les couches 1, 4 et 6. Chaque couche du CGL il y aune organisation rétinotopique

Les relations spatiales (rétinotopie) des projections des cellules ganglionnaires de la rétine sont maintenues dans les tissus cibles (CGL et Cortex) de la même façon que leurs représentations sur la carte du l’espace visuel. Le CGL des primates contient 6 couches, et les inputs à partir deux yeux sont maintenus dans des couches séparées à l’intérieur du CGL.


Rétinotopie Rétinotopie: organisation telle que des cellules voisines de la rétine transmettent des informations à des sites voisins de leurs structures-cibles, dans ce cas-ci le colliculus supérieur; organisation bidimensionnelle de la rétine se retrouve au niveau du colliculus;

On retrouve des cartes du champ visuel semblables au niveau du CGL et du cortex visuel primaire; les principes de base de la rétinotopie s’appliquent pareillement à ces structures; Deux points importants:

1- Plus de cellules ganglionnaires dont les champs récepteurs sont situés dans ou près de la fovéa qu’à la périphérie , c’est une sur-représentation du champ visuel central sur la carte rétinotopique , c’est une cartographie déformée; 2- Un petit point lumineux peut activer de nombreuses cellules de la rétine, et souvent plus encore dans la structure-cible en raison de la superposition des champs récepteurs. Au niveau du colliculus supérieur, la population de neurones activés par un spot lumineux contrôle le mouvement de la tête et des yeux par l’intermédiaire de connexions indirectes avec les neurones moteurs du tronc cérébral, c’est pour amener image de ce stimulus lumineux sur la fovéa.

La région centrale de la rétine jusqu'à 10° d'angle visuel occupe une large zone de l'aire striée au niveau du pôle postérieur, elle est la zone la plus sensible du fond de l'oeil. La ligne pointillée la plus externe représente la limite supérieure, inférieure et temporale du champ visuel droit et celle qui court à l'intérieur de ce champ, la limite nasale du champ visuel gauche


Rétinotopie: organisation telle que des cellules voisines de la rétine transmettent des informations à des sites voisins de leurs structures-cibles, dans ce cas-ci le colliculus supérieur; organisation bidimensionnelle de la rétine se retrouve au niveau du colliculus;

On retrouve des cartes du champ visuel semblables au niveau du CGL et du cortex visuel primaire; les principes de base de la rétinotopie s’appliquent pareillement à ces structures;


Corps genouillé latéral (CGL):Champs récepteurs Les neurones sont monoculaires CGL (par exemple, répondre à la stimulation d'un œil seulement) et ont concentriques (centre-pourtour) des champs récepteurs. Les neurones du CGL sont séparés en trois groupes principaux: Les neurones dans les couches magnocellulaires Analysent les inputs des cellules ganglionnaires M se comportent comme des cellules ganglionnaires de la rétine Mont relativement important centre entourent les champs réceptifs sont insensibles à la couleur sont plus sensibles au mouvement des stimuli visuels Les neurones dans les couches parvocellulaire Analysent les inputs des cellules ganglionnaires P se comportent comme des cellules ganglionnaires de la rétine-P ont relativement peu de centre-entourent champs réceptifs sont sensibles à la couleur sont bien adaptés pour la détection de contrastes qui forment la base de la forme / forme de discrimination. Les neurones koniocellular Analyse les inputs des des cellules ganglionnaires P se comportent comme des cellules ganglionnaires P ont le plus petit des champs récepteurs concentriques ont une sensibilité plus forte aux couleur que les cellules ganglionnaires P-rétinienne sont bien adaptés pour la détection des couleurs que l'aide de la forme / forme de discrimination. Les axones de ces différents types de neurones CGL fin dans les différentes couches ou sous-couches du cortex visuel primaire.


Corps genouillé latéral (CGL) Informations non rétiniennes au niveau du CGL: 80% des afférences du CGL proviennent du cortex visuel primaire


6: ipsilatéral 5: controlatéral 4: controlatéral

Cellules P

3: ipsilatéral

2: ipsilatéral

Cellules M 1: controlatéral

Cellules ganglionnaires de type P se projettent exclusivement dans les couches 3, 4, 5 et 6 du CGL, et les cellules ganglionnaires de type M dans les couches 1 et 2; La partie ventrale de chaque couche comprend de nombreux petits neurones recevant des afférences de cellules ganglionnaires peu connues: il s’agit des couches Koniocellulaires (du grec konis: poussière; rôle inconnu);


Projection des neurones du corps genouillé latéral vers les couches du cortex visuel primaire Les cellules P (parvocellulaires) et M (magnocellulaires) se terminent dans deux bandes distinctes de la couche IV du cortex, les cellules P dans la couche IVC-alpha et les cellules M dans la couche IVC-beta. Le cortex visuel primaire gauche (par exemple) reçoit l'ensemble des neurones correspondant à l'hémichamp droit, c'est à dire les neurones issus de la rétine temporale gauche et de la rétine nasale droite.

Infos provenant de l’œil gauche et de l ’œil droit restent séparées jusque dans la couche IVC; La combinaison intervient au niveau de IVB et de III (taches).


Chez l'homme, environ 60% des fibres croisent dans le chiasma tandis que les 40% restants continuent du même côté vers le thalamus et le mésencéphale. Au dela du chiasma, les axones des cellules ganglionnaires forment le tractus optique (ou bandelette optique) qui, contrairement au nerf optique, contient des fibres provenant des deux yeux


Les inputs venant des deux yeux convergent au niveau cortical, faisant des effets binoculaires. Le cortex visuel primaire (V1 ou cortex strié) projet aux autres aires du cortex cérébral (extrastriées) qui sont impliquées dans la perception visuelle. Le system du flux dorsal , provenant à partir du cortex strié vers la partie supérieure du lobe temporal.

L’ordre topographique des informations visuelles est maintenu dans le cortex visuel (rétinotopie). La fovée est représentée dans la partie postérieure du cortex visuel, alors que les autres régions périphériques de la rétine sont représentées respectivement dans des régions plus antéreiures. Notons que l’aire de la vision centrale (la fovéa) est particulièrement sur-représentée sur une grande partie du cortex visuel.

Ce système est considéré être responsable de la vision à aspect spatial, tel que l’analyse des relations entre le mouvement et la position des objets de la scène visuelle. Un autre système, le flux ventral, provenant du cortex strié vers la partie inférieure du lobe temporal. Ce système est considéré être responsable de la vision à haute résolution spatiale et la reconnaissance des objets.


Anatomie du cortex strié Organisation laminaire du cortex strié Afférences et efférences des différentes couches

Couche III

Couche IVC Couche VI

Connexions radiales (partent de IV) versus horizontales (se font dans III).

• • •

CGL se projette essentiellement dans IVC; Rétinotopie respectée; sur-représentation de la partie centrale de la rétine; Efférences du cortex strié


Physiologie du cortex strié Canal M

Selon le pattern (style) de réponse des cellules du Cortex strié, on trouve 3 type de cellules (réponse) - Simple : réponse phasique, -Complexe: réponse soutenue -- hypercomplexe: autres type de réponses


Colonnes d’orientations

Physiologie du cortex strié

Hubel et Wiesel ont montré que la préférence d’orientation était ainsi inversée de 180 degrés en moyenne lorsque l’électrode se déplace de 1 millimètre environ dans la couche III.


Injection de l'acide aminé radioactif dans l'un des deux globes oculaires d'un singe (Hubel et Wiesel)

Cortex strié : Aire 17 (chat) aire V1 (singe) Colonne de dominance oculaire

On peut dire que les colonnes de dominance oculaire constituent un troisième niveau d’organisation cellulaire dans le cortex visuel primaire. Ces colonnes, situées au niveau de la couche IV C, se présentent en fait sous forme de bandes de 0,5 millimètres de large régulièrement espacées.

En fait, des expériences de marquage ont permis de constater que ces bandes correspondaient aux terminaisons nerveuses de l’œil gauche et de l’œil droit et qu’elles alternaient ainsi d’un œil à l’autre, se disposant un peu comme les rayures d’un zèbre.

Autoradiographie d'une coupe histologique ducortex visuel primaire


Anatomie du cortex strié: Projection du CGL au niveau IVC

Comment la séparation des informations venant de l’œil droit et de l’œil gauche est-elle préservée dans la couche IVC du cortex strié? Rép.: Par les colonnes de dominance oculaire de l’aire IV qui intègrent les terminaisons nerveuses de chaque œil. Découverte de Hubel et Wiesel

Les neurones de la couche IVC envoient leurs axones radialement dans IVB et III où commence la combinaison binoculaire de l ’œil gauche et de l ’œil droit; la ségrégation des processus magno et parvo demeure cependant: Magno du CGL vers IVC alpha vers IVB; Parvo du CGL vers IVC bêta vers III; Taches et zones intermédiaires (couche III)


Colonnes d’orientation: -Injection du glucose marqué + stimulation d’une orientation choisie - par descente de l’électrode obliquement

Une organisation « modulaire » du cortex strié Les cellules d'orientation sont organisées en colonnes (une colonne regroupe des cellules sensibles à la même orientation) d'environ 50 micomètres d'épaisseur. Ce sont donc des colonnes plus étroites que les colonnes de dominance oculaire et elles sont disposées perpendiculairement à ces dernières. Ces colonnes d'orientation sont, de plus, disposées selon un ordre très précis: l'axe auquel les cellules sont sensibles suit progressivement, de colonne en colonne une succession géométrique de 10° environ. Une troisième organisation tridimensionnelle existe dans le cortex visuel primaire. On trouve une disposition en cylindres (formant des taches nettes lors de coupes du cortex à travers ses couches II et III notamment) de cellules sensibles à la couleur (regroupées dans les blobs), alors que les cellules sensibles à la forme sont entre ces "blobs", dans les zones inter-taches. Finalement l'image d'un point du champ visuel est traité par une portion de 2mm x 2mm de cortex visuel de l'aire V1 (hypercolonne), renfermant: 2 sets de colonnes de dominance oculaire (couche IV) 2 sets de colonnes d'orientation de 0° à 180° (couche III) 16 blobs sensibles à la couleur (couche III)


D’autres chercheurs ont mis en évidence à la fin des années 1970, à l’aide d’un colorant appelé cytochrome oxydase, un autre type de colonnes localisées à intervalles réguliers et traversant les couches II, III, V et VI. Ces colonnes qui ont l’aspect des taches. Ces taches sont donc disposées en lignes et centrées sur une bande de dominance oculaire de la couche IV C. Entre les taches se trouvent forcément des zones intermédiaires dites « intertaches » dont les neurones ne possèdent pas les caractéristiques de ceux des taches. Les cellules des taches ont ceci de particulier qu’elles sont sensibles à la longueur d’onde du stimulus, autrement dit à sa couleur. De plus, elles sont monoculaires, n’ont pas de spécificité d’orientation et présentent plutôt des champs récepteurs à symétrie circulaire.

Un module cortical (ou hyper-colonne) c'est un volume qui paraît nécessaire et suffisant pour analyser un point de l'espace visuel.


Cortex visuel V1 Le cortex visuel primaire reçoit les afférences du GLd. Il est organisé en 6 couches principales: afférences K = couches 2-3 afférences M = couche 4Cα afférences P = couche 4C β


Travaux de Hubel et Wiesel cortex strié: Trois voies relativement indépendantes dans le traitement des infos visuelles: 1-Canal Magnocellulaire ou canal M (analyse les mouvements) 2-Canal Parvo-cellulaire intertaches ou canal P-IB (parvocellular-interblob channel) (analyse la forme) 3-Canal des taches. Canal M: Spécialisé dans l ’analyse du déplacement des objets • Cellules ganglionnaires magnocellulaires de la rétine: grands champs récepteurs, propagation rapide, plus sensibles aux faibles contrastes; • Cellules du CGL magnocellulaires: monoculaire, insensibles à la longueur d’onde de la lumière; • Cortex strié, IVC alpha: cellules simples: sélectivité d’orientation: répond à l’alignement du stimulus avec le champ récepteur, réponse nulle lorsque perpendiculaire Cortex strié, IVB: champs récepteurs binoculaires: sélectivité de direction: sensible à une direction de balayage donnée. Canal P-Ibs (inter-blob): Spécialisé dans l ’analyse de la forme des objets • Cellules ganglionnaires parvocellulaires de la rétine: petits champs récepteurs, sensibles à la forme du stimulus, sensibles aux différences de longueur d’onde; • Cellules du CGL parvocellulaires: petits champs récepteurs monoculaires à opposition centre-périphérie bleu-jaune, rouge-vert (80%); • Cortex strié, IVC bêta: petits champs récepteurs monoculaires à opposition centre-périphérie bleu-jaune, rougevert; • Cortex strié, II et III (zones intermédiaires): champs récepteurs binoculaires: cellules complexes: relativement insensibles à la longueur d’onde: hautement spécifiques à l’orientation Canal des taches: Spécialisé dans l ’analyse de la couleur des objets • Cellules des taches: couche III du cortex strié; • Sensibles à la longueur d’onde; • Monoculaires; • Insensibles à l’orientation; • Les neurones du cortex strié sensibles à la couleur se retrouvent donc dans IVC bêta et dans III au niveau des taches.


Effet de magnification


Neurovision  
Read more
Read more
Similar to
Popular now
Just for you