Issuu on Google+

Pioruny ,,Wszystko o piorunach” Działo się to przed wojną,kiedy tragedie i komedie życia prywatnego wydawały się jeszcze ważne.Małżeństwo Frank i Jessie spotkali w Heliopolis dawnego przyjaciela.Wspólnie postanowili wybrać się na dwutygodniową wycieczkę w głąb pustyni.Dobrali sobie jeszcze jedną parę,austriaków o nazwisku Radolin.Od samego początku Jessie flirtowała z Radolinem,a pozostali przyglądali się temu z dystansem.Nikt nie zauważył nawiązującej się nici sympatii pomiędzy Frankiem i Heleną Radolin.Po tygodniu,dla wszystkich stało się jasne,że tych dwoje pokochało się.Nie można rzec,żeby ich stosunek rozwijał się.Zdawało się tylko,że dla nich nie istniało na świecie nic oprócz nich.Pod koniec wycieczki Frank wyznał swemu przyjacielowi,że nie opuści Heleny,bez względu na wszelkie konsekwencje.Nie pomogły przestrogi i odwoływanie się do rozsądku.Po powrocie do hotelu w Heliopolis,Radolinowie natychmiast wyjechali do domu,do Konstantynopola.Tego dnia zniknął też Frank.Następnego dnia rano listonosz przyniósł list,wraz z czekiem na 300 funtów dla Jessie.Frank informował,że są to wszystkie pieniądze jakie posiada,że jest w Konstantynopolu,przeprasza i prosi o pomoc jego żonie, w jej powrocie do Anglii. Agnieszka Jędrych i Emilka Hobot 2012-05-22

1


Piorun – w meteorologii bardzo silne wyładowanie elektryczne w atmosferze powstające naturalnie, zwykle towarzyszące burzom. Piorunowi często towarzyszy grom dźwiękowy oraz zjawisko świetlne zwane błyskawicą. Może ono przybierać rozmaite kształty i rozciągłości, tworzyć linie proste lub rozgałęziać się do góry lub w dół. Występują błyskawice, które widoczne są jedynie jako rozjaśnienie powierzchni chmury, inne znów w ciągu ułamka sekundy przypominają swym kształtem świecący sznur pereł.

Skutki uderzeń pioruna: Piorun może wywołać pożar. Uderzenia rozrywają pnie drzew i mury, potrafią oderwać płyty kamienne wykładzin dachowych, murów ważące do 100 kg i odrzucić je na kilka metrów, przepalają cienkie druty, wywołują uszkodzenia instalacji elektrycznych, telefonicznych i innych opartych o metalowe przewody, niszczą urządzenia elektryczne. Temperatura w kanale przewodzenia pioruna jest tak wielka, że krzemionka zawarta w ziemi w miejscu uderzenia topi się, tworząc naturalne szkło nazywane fulgurytem. Działanie na urządzenia elektryczne wywołane jest poprzez bezpośrednie uderzenie pioruna w sieć elektroenergetyczną, a także w przypadku indukowania się napięcia tzw. impulsu elektromagnetycznego, gdy piorun uderzy w pobliżu sieci.

2


Wyładowania atmosferyczne zagrażają aparaturze elektronicznej w dwojaki sposób: •

przepływ prądu piorunowego może uszkodzić aparaturę i instalacje

impuls elektromagnetyczny spowodowany wyładowaniem, może indukować duże napięcie

Parametry wyładowania piorunowego: •

wartość szczytowa prądu

czas narastania prądu (maksymalna stromość prąd

Co to jest wartość szczytowa prądu? Określa natężenie prądu, który może popłynąć przez kanał piorunowy wskutek uderzenia pioruna. Załóżmy, że wartość szczytowa prądu pioruna, który uderzył w budynek wynosi 140 kA. Niech rezystancja uziemienia (bezindukcyjnego) budynku wynosi 2 omy (obowiązujące w Polsce przepisy wymagają wartość mniejszą od 10 omów PN-EN 60364). Napięcie związane z przepływem tego prądu wynosi 280 kV. Jeżeli nie zostały zainstalowane ochronniki przepięciowe takiemu właśnie zakłóceniu zostaną poddane linie zasilające i telekomunikacyjne.

2


Czas narastania prądu: Jest kolejnym parametrem wyładowania. Im jest on krótszy, tym krótszy jest impuls elektromagnetyczny powstający podczas wyładowania. Napięcie zakłócające, które może się indukować podczas przepływu fali elektromagnetycznej jest proporcjonalne właśnie do wartości tego parametru. Pole elektromagnetyczne powstałe podczas wyładowania ma wąskie widmo w zakresie fal długich. Dlatego może z łatwością wnikać do wnętrza budynków. Dodatkowo, ma ono charakter magnetyczny co utrudnia ekranowanie. Napięcie indukowane przez taki impuls może osiągać wartości 100 V/m² (w przypadku gdy piorun uderzył 100 m od urządzenia, dziesięciokrotne skrócenie tej odległości powoduje dziesięciokrotny wzrost SEM).

2


Zasady ochrony przed piorunami W czasie burzy nie wolno się kąpać, chodzić na spacery, stawać pod samotnie rosnącymi drzewami (prąd wyładowania przepływający rdzeniem drzewa doprowadza do gwałtownego odparowania znajdującej się w nim wody i w efekcie bardzo groźnego wybuchu), w pobliżu wysokich metalowych masztów, w które często uderza piorun ani w pobliżu linii elektroenergetycznych. Osoba przebywająca na otwartej przestrzeni powinna znaleźć pomieszczenie, budynek, ziemiankę i ukryć się w nim. Z braku innej możliwości schronić się w zagłębieniu terenu, nie kłaść się na ziemi. Najbezpieczniej jest ukucnąć ze złączonymi i podciągniętymi do siebie nogami, ponieważ po uderzeniu pioruna, w wyniku rozpływu ładunku w postaci prądów powierzchniowych, może dojść do przepływu prądu między stopami poprzez ciało ofiary (skutek powstania różnicy napięć, tzw. napięcia krokowego). Należy odrzucić lub położyć na ziemi duże przedmioty metalowe przewodzące prąd. Trzeba również oddalić się od zbiorników i cieków wodnych (podobnie połacie wilgotnego mchu stanowią zagrożenie). Osoby znajdujące się w górach powinny niezwłocznie zejść ze szczytów i grani, około 100 metrów niżej, najlepiej na stronę zawietrzną (przeciwną do kierunku zbliżania się burzy). Mogą one usiąść na plecakach (nie na stelażu!), tak aby odizolować się od podłoża i zabezpieczyć przed wtórnym porażeniem od prądów powierzchniowych.

2


Chmury burzowe Uważa się, że ładunek elektryczny w powietrzu powstaje w wyniku powszechnie znanych mechanizmów elektryzowania głównie przez indukcję elektrostatyczną oraz pocieranie. Choć główny mechanizm jest znany, to szczegóły zjawisk zachodzących w chmurach burzowych są niezwykle złożone a opis hipotetyczny. Kiedy na skutek zderzenia zimnych i ciepłych mas powietrza powstaje silny prąd wznoszący, tworzą się chmury burzowe (kłębiasto-deszczowe, cumulonimbus) mające wysokość nawet kilkunastu (10-20) kilometrów. Ruch powietrza powoduje wzajemne zderzanie ze sobą kryształów lodu oraz kropel wody. Prąd powietrza rozdziela lżejsze kryształki lodu od krup unosząc je do góry. Krupy opadają na dół chmury i w ten sposób powstaje różnica potencjałów rzędu od 10 do 100 milionów woltów.

2


Wyładowanie pilotujące Kiedy różnica potencjałów stanie się wystarczająco duża, może rozpocząć się wyładowanie elektryczne. Według hipotezy zaproponowanej przez Aleksandra Gurewicza z Instytutu Lebiedewa w Rosji drogę wyładowania pilotującego wytyczają wysokoenergetyczne cząstki promieniowania kosmicznego. Zderzenie kosmicznego przybysza z atomem powietrza prowadzi do powstania kaskad cząstek wtórnych wytwarzających strumienie elektronów. W ten sposób w górnej naładowanej ujemnie części chmury rozpoczyna się wyładowanie pilotujące (lider, prekursor). Strumienie naładowanych cząstek pokonują odległość do ziemi skokami o długości od 30 do 50 metrów. Zachodzi przy tym jonizacja powietrza, co zmniejsza opór elektryczny. Cały proces może trwać od ok. 10 do ok. 100 milisekund (tysięcznych części sekundy). Często wyładowanie pilotujące rozdziela się na wiele odnóg, z których tylko jedna dociera jako pierwsza do celu.

2


Wyładowanie do jonosfery Pierwszy raz wzmianki o wyładowaniu z chmury burzowej do góry pojawiły się w roku 1886, ale potwierdzenie znalazły dopiero ostatnio. Najczęściej obserwowany rodzaj wyładowania do jonosfery pojawia się tylko w chmurach cumulonimbus wznoszących się wysoko do góry. Ma ono zwykle kolor czerwono pomarańczowy, podobny do światła lamp neonowych i trwa dłużej niż zwykły piorun. Zwykle jest widoczne przez 17 ms. Jego źródłem jest bardzo silny piorun w kierunku ziemi, który pozbawia chmurę ładunku dodatniego. Wyładowanie w kierunku jonosfery może mieć wysokość do 50 km i pojawia się około 100 ms później. Często wyładowanie jest podwójne, a wokół niego na skutek rozgrzania plazmy powstaje poświata.

2


Krótki filmik o wyładowaniu atmosferycznym. http://pl.wikipedia.org/wiki/Plik:Flash-Lightning_over_Germany.ogg

2


Pioruny