Axiomatic Method and Category Theory

Page 81

two further groups of axioms, which he describes as “specifically mathematical”, namely “axioms of equality” and “axioms of number”. Then Hilbert shows how this apparatus allows one to do the finitary arithmetic. One may wonder if doing the finitary arithmetics with this heavy logical machinery indeed provides any epistemic advantage over doing it in the traditional way. Hilbert’s answer is: No, it does not! As far as the finitary arithmetic is concerned this machinery allows one at best to “impart information” 10 . If I understand here Hilbert correctly his thinking is this: since usual arithmetical manipulations with natural numbers represented by strings of strokes or by the standard Arabic numerals are just as intuitively clear as the manipulation of symbols and formulas in the Hilbert’s symbolic system, from the foundational viewpoint the difference between the two formalisms is after all not essential (notwithstanding the fact that the former formalism has an advantage of being simpler and more convenient, while the latter formalism has an advantage of making explicit the logical structure of reasoning). However the new proposed formalism is advantageous as soon as one goes beyond the finitary arithmetic. Hilbert suggests thinking about such an extension after the pattern of algebraic extension: Just as, for example, the negative numbers are indispensable in elementary number theory and just as modern number theory and algebra become possible only through the Kummer-Dedekind ideals, so scientific mathematics becomes possible only through the introduction of ideal propositions. ([100], p.471) An “ideal proposition” is any proposition that is not provable from Hilbert’s logical and arithmetical axioms, i.e., any proposition, which is not a proposition of the finitary arithmetic. So any additional axiom and any formal proposition obtained as a formal consequence of the extended axiom system (which includes the same logical and arithmetical axioms plus the new axiom) qualifies as ideal. The only requirement that limits such possible extensions is the requirement according to which the extended system of axioms must be consistent. As soon as the consistency is granted one may safely think of “ideal” objects and “ideal” relations involved into the given ideal proposition as existent along the same pattern of thinking, which we have already explained talking about the Foundations of 1899 (remind from 2.1 of thought-things and thought-relations). And in fact one can do more. Since these ideal objects and relations are represented by symbols and strings of symbols, which (unlike the bare thought-things and 10

If we now begin to construct mathematics, we shall first set our sights upon elementary number theory; we recognize that we can obtain and prove its truths through contentual intuitive considerations. The formulas that we encounter when we take this approach are used only to impart information. Letters stand for numerals, and an equation informs us of the fact that two signs stand for the same thing. ([100], p. 469)

60


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.