Page 1

!

William!Dougherty! !

Into!Focus! for!violin!and!orchestra!

! ! ! ! ! Full!Score! ! ! www.williamdougherty.org! ! ! !


This!work!was!written!for!the!Aldworth)Philharmonic)Orchestra)(APO))as!part!of!the!2012! APO!Young!Composer’s!Award.!It!was!premiered!in!Reading,!England,!January!2013!by!Jenna! Sherry!under!the!direction!of!Andrew!Taylor.!

! Composer’s!Note! Into)Focus!is!a!work!that!is!centered!on!the!cognitive!blurring!that!occurs!with!elements!out! of!a!human’s!direct!attention.!When!concentrating!on!one!aspect!of,!for!example,!a!visual! environment,!there!are!three!areas!of!perception!known!as!the!focus,!fringe,!and!margin.! “The!focus!is!an!area!that!extracts!information!from!the!visual!scene!with!a!highNresolution,! the!geometric!center!of!which!being!where!visual!attention!is!directed.!Surrounding!the! focus!is!the!fringe!of!attention!which!extracts!information!in!a!much!more!crude!fashion.! This!fringe!extends!out!to!a!specified!area!and!this!cutNoff!is!called!the!margin.1!”!Into)Focus) explores!these!blurry!areas!of!perception!through!a!continual!blending!of!harmonic!blocks! which!fade!in!and!out,!in!volume!level,!tuning,!and!instrumentation.!The!goal!was!to!create! a!scenario!where!the!arrival!of!a!recognizable!chord!or!sonority!was!not!the!focal!point!of! the!work,!rather!the!warping!of!one!harmony!into!another,!creating!a!blurred!quality!similar! to!the!fringes!of!visual!perception.!!

! ! ! ! ! ! ! ! ! ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Eriksen,!C;!Hoffman,!J.!(1972).!"Temporal!and!spatial!characteristics!of!selective!encoding!from!visual! displays".!Perception)&)Psychophysics!12!(2B):!201–204.!

!


Performance!Notes! ! The!Score!is!in!C!! Accidentals!apply!for!the!entire!measure!in!which!they!appear!and!are!octave!specific.!! !!!!!!!!!!!!!!!!!!!!!!!!=!gradually!change!technique!or!method!of!playing! ! L.V.!=!Let!vibrate! ! ! ! ! ! ord.!=!ordinario!! ! ! =!¼!tone!flat! !!!!!!!=!1/6!tone!flat! ! ! =!¼!tone!sharp! ! !!!!!!!=!sharp!raised!¼!tone! ! !!!!!!!!! ! =!flat!lowered!¼!tone! ! !!!!!!!=!flat!lowered!1/6!tone! ! !!!!!!!! ! =!diminuendo!to!nothing! !!!!!!!!!!!=!crescendo!from!nothing! ! ! !!

! Notes!for!Strings:! ! !

Bow!Pressure:!! ! !

Bow!Position:! !

HP!=!very!high!pressure! ! FL!=!flautando,!very!light!pressure! ! ord.!=!normal!pressure

ASP!=!alto!sul!ponticello!(very!very!near! the!bridge!–!almost!ON!the!bridge)!

!

! ! ! !

!

MSP!=!molto!sul!ponticello!(very!near!the! bridge)! ! SP!=!sul!ponticello!(near!the!bridge)! ! ord.!=!normal!bow!position! ! ST!=!sul!tasto!(near!the!fingerboard) ! MST!=!molto!sul!tasto!(on!the!fingerboard)

!!


Notes!for!Strings!Continued:! Whenever!possible,!play!on!open!strings.! ! The!double!basses!sound!an!octave!lower!than!notated!(including!harmonics)! ! When!separated!by!a!“/�,!for!example!ASP/ord.,!there!should!be!an!immediate!change!in! bow!pressure!or!bow!position.!In!this!case,!immediately!changing!from!alto!sul!ponticello!to! ordinario.! G:!12!=!pitch!under!indication!is!produced!by!lightly!touching!the!12th!natural!harmonic!of! the!G!string.!This!applies!to!any!indication!in!this!format!(i.e.!string!name:!harmonic!#)! ! G:!12Nhighest!=!pitch!under!indication!is!produced!by!lightly!touching!somewhere!between! the!12th!natural!harmonic!and!highest!possible!natural!harmonic.! ! ! ! !

! !

! !

! !

! !

! !

! !

!!!!=!freely!alternate!between!sul!! !!!!ponticello!and!sul!tasto!until!indicated!

! !

!

!

!

!

!

!!=!alternate!between!the!9th!natural!harmonic!on!!

!

!

!

!

!

!!the!G!string!and!an!open!G!string,!under!one!bow,! !!!gradually!accelerating!

! ! ! !

!

!

!

!

!

! ! !

=!slowly!glissando!on!natural!harmonics!somewhere!between!the!11th! natural!harmonic!and!the!13th!natural!harmonic!on!the!G!string! –!the!glissando!should!be!executed!smoothly,!freely,!and!!! ! aperiodically!

! ! !

! ! !

! ! ! ! !

!

! ! !

=!arpeggio!between!an!open!A!and!E!string!with!the!! highest!possible!natural!harmonic!on!the!G!and!D!string!! creating!a!high,!gritty,!almost!nonNpitched!sound!


Notes!for!Strings!Continued:! ! ! ! ! ! ! !

! ! !

! ! !

! ! !

!!!!!!!!!!! !!=!lightly!touch!!D!!!and!A!!!!on!the!G!and!D!string!! ! !!creating!a!multiphonic!of!approximate!pitches!as!! !!!!!!!!!!!!!!!indicated!

!

Notes!for!Piano:! ! All!gestures!should!be!lightly!pedaled!unless!otherwise!notated.!When!L.V.!is!indicated,!hold! down!sustain!pedal!until!next!gesture.! ! Harmonics!on!the!piano!are!performed!by!lightly!touching!the!midway!point!of!the!string!an! octave!below!the!notated!pitch!and!striking!the!key!as!per!usual.!In!the!case!that!a!grand! piano!is!unavailable!and!an!upright!is!used,!either!slightly!mute!the!string!with!the!flesh!of! the!finger!very!near!the!node!or!lightly!touch!two!octaves!below!the!written!pitch!at!the!1/8! division!of!the!string.!

! ! Notes!for!Winds:! ! Alternate!Fingerings!(timbre!change)!=!use!two!different!fingerings!to!produce!the!same! tone,!alternating!from!pitch!to!pitch.!! ! Trumpet:! !

! ! !=!cover!harmon!mute!(with!stem!out)!with!!!!!!! hand!and!gradually!remove!!

French!Horn:!

! !

!

!

!

!!!!!!=!to!produce!quarter!tone,!play!indicated!pitch!a!semitone!

!

!

!

!

!!!!!!!higher!and!insert!hand!into!bell!slightly!


Instrumentation! ! 3!flutes!(2=piccolo,!3=alto!flute)! ! 2!oboes!! cor!anglais! 3!clarinets!in!Bb!(1=Eb!clarinet,!3=bass!clarinet)! 2!bassoons! contrabassoon! ! 4!horns!in!F! 2!trumpets!in!C! 2!trombones! tuba! ! percussion!(3!players)!medium!wood!block,!glockenspiel,!xylophone,!marimba,!bass!drum! timpani! ! piano!!! ! violin!soloist! strings!(10.9.7.6.4)! ! Duration:!c.!12!minutes! ! William!Dougherty! Spalenvorstadt!19! Basel,!4051! William Dougherty Switzerland! 100! Morningside Drive, Apt. 1A New York, NY 10027 tel:!+41!(0)!76.237.2858! tel:eNmail:!william.f.dougherty@gmail.com! +1.443.743.4225 website:!www.williamdougherty.org! e-mail: william.f.dougherty@gmail.com web: www.williamdougherty.org


Into!Focus

Score!in!C

for*violin*and*orchestra

  

q!=!70

Piccolo*(2)

Flute*(1)

Alto*Flute*(3)



(

)

(

very airy

)

(



gliss.

pppp possible

gliss.

)

William!Dougherty!(2012)

 

pp

  

pppp

 

 

 



ord.

 

  



pp

pppp

 

 



p

 

ff very airy

 



pppp possible

  



     

f

Oboe*1.2

 

 

Cor*Anglais

 

 

 

Clarinet*in*Eb 1*

 

 





pppp possible

Clarinet*in*Bb**2

 

 

Bass*Clarinet in*Bb

 

 

Bassoon*1.2

 

 

Contrabassoon

  

 

  

Horn*in*F*2.3.4

 

Trumpet*in*C*1.2

 

Tenor*Trombone*1.2

 

Tuba

  

 

Horn*in*F*1

Timpani

   

       wood block

Percussion* (Wood*Block,**Bass*Drum)





 

f

Xylophone

Marimba

     

    

fff

fff

 

    

Piano

Violin**solo







 

 

 

 

         3











3

    

 

 



 

 

 

 

 

 

 

  

 

 

 

 

 

 

3

ord. ord.



 

 

 

 

 







  

 

 

 

 

 

SP G: 2



7   

 

  

  

6

etc.

6

etc.

  

       

  



p

     

 



  

  

ppp

Copyright*©*2012*by*William*Dougherty All*Rights*Reserved.

 



  

 













fppp

 

     

  

ppp

 

fff

 

fff 7

ppp

SP A: 8

Violoncello divisi

ppp SP A: 9

  

ppp

3

 

fff

     



ppp

SP G: 11

 

Viola divisi

 



 

ppp

3

  

SP G: 12-highest

 

SP D: 8

Double*Bass divisi



 

Violin*2 divisi

 

ppp SP G: 12-highest

 

fff

FL SP G: 9

ppp

 



HP ASP

SP G: 8

 

 

f

fff

SP G: 8

L.V.

A: harmonic, G: ord.

  

 

fff

    

 

fff

Violin*1 divisi

 



ppp

p

 

FL SP G: 8

  

 

  

f

 

q!=!70

 

ppp possible

  



fff

  

ppp

 

 

con sord.

ppp

L.V.



 

   

ff

Glockenspiel



 

pp

  

SP

ST

fpp



  

  

 

 

 

  

 

   

 

   

 

   

 

f

f


2 Picc.*(2)

Fl.*(1)

A 8   

 

(

gliss.

)



 

(

)

( gliss.

  

pppp

)

   

 

pp

pppp

 ( gliss.

  ) 

 

(

 ) 



gliss.

pp

 

 

pppp

B    



 



 

 

ff

     

Flute (3)

A.*Fl.*(3)

 

 

         ppp

to Flute

  

alternate fingerings (timbre change)

Eb*Cl.*1

Bb*Cl.*2

B.*Cl.*(3)

Bsn.*1

Hn.*1

Perc.

Glock.

Xyl.

 

 

 

 

 

  

 

   

 

    



 

pp

        



 

   

ppp

3

    



ppp

     

con sord.



 



  

ff

 

 

     



 

 

ppp possible

                 

 

 

  

 



   

 

 



ppp possible

ff

ppp

 

 



ff

f

 

    

 

fff

 

 

     

 

 

 

 

    

 

 

 

 

  

 

   



  

3

ppp

ppp

  

     

L.V.

f

fff

f

    3

fff

               

 

      

 

L.V.





 

L.V.

 

 

 

ppp

 

Vln.*Solo

  

  

     

Pno.

 

 

(wood block)

 

ppp possible

  

Mar.

                 

 

 

ppp possible

A

 

 

B

(FL) HP

(SP)                                   

 



 

SP G: 9

 



 

  

  

ppp

Vln. 2 divisi

 

 

 

ppp SP D: 8

    3

 

 

 

 SP A: 8

 

 

 

  

 

8    

    

 

7 etc.

 

       

7 etc.             

 

 

 

 

  

          

      

 

 

 

 

 

 

 

 

  

 

  

 

  

 

  

 

fff

 

  

          fff

 







 

 

 

ppp SP G: 2

 

 



ppp

        



     

fppp SP G: 2

   

Db. divisi

  

      

ppp

Vcl. divisi

 

    

  

8

ppp

SP A: 9

 

   

ppp

SP G: 11

 





 

 

 

Vla. divisi

 

  

SP G: 12-highest 3

 

        

ppp SP G: 8

 

(FL) ord.

+        

p

ppp Vln. 1 divisi

 

fff SP G: 9

  

FL SP G: 10

ASP

   

 

         pp



        



     

 

 

  









            

 

ff

            

ff


Picc.*(2)

16    

 

Fl.*(1)

Ob.*2

Eb*Cl.*1

 

 

 

 

 

Bb*Cl.*3

 

 

 

  

     

ppp



 

 3

  

 

  

 



ppp

 

Hn.*2

INSERT MUTE

f



    

f



ppp

     

ppp

f

       f

ppp

ppp

    

f

ppp



ppp

 

ppp



   

 

ppp

ppp

f



       f

      

 

 

ppp

 

ppp

ppp

f

 

ppp

 

Bsn.*2

         f



 

 

 

ppp

 

 

 

3

 

 

Bsn.*1

 

Bb*Cl.*2

Hn.*1

 

 

Ob.*1

 

    

Fl.**(3)

Cbsn.

 

con sord.

   

f

 

Hn.*3

INSERT MUTE

 

con sord.



p

 

Hn.*4

INSERT MUTE



p

 

Tba.

Timp.

Mar.

 

  

 



   

    

 

 

 

   

 

SP

 

fff

3

  

 

   

pp Vln. 1 divisi

 

 

G: 10

  

pp

G: 8      SP

 

 

 

 





 

  





 

  

f

      

 

  



 

p

 



 

 



 



  

 

  



 



 

  

ord.

 

 

 

 

   

 

 

 

 

 

 

  

  

ppp

Vla. divisi

  

  

Vcl. divisi



3

ppp

ppp

  

ppp



SP G: 2

 

ppp

fpp



 

  

  

 

 3

SP G: 2

Db. divisi





pp









 

  3

 

  ff





ord.

  

ord.

  

 



pp

ord.    fp

gliss.

pp

 

 

ord.

gliss.



gliss.

pp

gliss.

gliss.

gliss.

mf

gliss.



gliss.



gliss.

 



gliss.

 

mf

mf

mf

pp

pp

gliss.

 

pp

 mf

ord.

  

 

ord.

p

 

  gliss.  mf

pp

pp

SP A: 9

3    



pp

ord.

SP G:11

SP A: 8

      

fff

SP D: 8



fff

SP

  

 

mf

 

G: 8   



ppp

ppp

  

 

f

3



REMOVE MUTE

 

  

3

 

Vln. 2 divisi

ST

f

G: 10

ppp

con sord.

FL

 

REMOVE MUTE

ppp possible

L.V.

pp

  



f gliss.

pp

HP SP

ppp



(FL) SP G: 10

Vln.*Solo

con sord. (harmon, stem out)

INSERT MUTE

C*Tpt.*1

 

 

con sord.

 





pp

gliss.

 pp


4

  20

Picc.*(2)

Fl.*(1)

  

  f

Ob.*1

Ob.*2

Eb*Cl.*1

Fl.**(3)

C



 



f



f

   

f

 















fp

 

Bb*Cl.*3

Bsn.*1



 



  



 Hn.*1  

 

 

Hn.*2

C*Tpt.*1

Tbn.*2

Tba.

Timp.

Perc.

Glock.

Xyl.

Mar.

Pno.

   

 

 

 

con sord. (straight)

 

wood block

 

 



  

 

 



Vln. 1 divisi

gliss.

 mf



gliss.

mf gliss.

pp

 pp

 

Vcl. divisi

 

 

gliss.

 pp



 SP G: 8 

   

SP G: 8



SP D: 8



 

 

 

ppp

 

G: 2 SP ST

 

 

 

gliss.

ppp

 

 

 

 3









ppp



 multiphonic artificial harmonic on G# lightly touch on C

MSP

ST ord.

 

pp

  

SP



 

  

 



  

gliss.

  

 

 



fffp

 

  



 













fffp

 

fff

 

 

 

 

 

 

 

 

 







 

f

gliss.

(

)



 3







ppp

 ff

ST

 

  



 

 

fffp

 

fff

    

3

SP A: 8

ppp

3

ppp SP A: 9

ppp SP G:11

 

ppp

3

pp



ff

ppp

pp SP G: 10

 

 

ppp

fff

  



C

SP G: 10



 



ppp

 

ppp

ppp

HP

fffp

 ASP



gliss.



  

HP/ord. ord.

ff

ppp

ff

3



fff

Db. divisi

 

con sord. (straight)

fff

ff

 

ff

L.V.

 



ppp

ff

 

)

(



ff

gliss.

Vla. divisi

 

ppp



  

 

Vln. 2 divisi



ppp

 

Vln.*Solo

f

INSERT MUTE

  

  

p

INSERT MUTE



 

  

 

Tbn.*1

f

f

f

ppp

 

  

f Cbsn.

f

Bsn.*2



 

f



fp

fp

 

f

Bb*Cl.*2

 



MSP

gliss.

(

)

 

ff


24      Picc.*(2) 

Fl.*(1)

Fl.**(3)





 

   





  fff

   





  fff



  



Cbsn.

Hn.*1



 

 

Timp.

Glock.

 ) 





 

(



)







ff

ppp



3

5

6

5

6

3

5

6

3

5

6

 

 

 ff



L.V.

 

f





   

 3

      

(

  

 

 

 



 

 

gliss.

fffp

fff

 

3

 

5

3

5



 

ppp

Db. divisi (

 ) 

(

 ) 

gliss.

 

 ord. HP/ord.

 

  

 







 



fffp

ff

gliss.

 pp

 

G: 2

ppp

mf

  

 

G: 2 ASP

ppp

ord.

ST

ppp

)

3

FL SP G: 10

  

   

fff



 3

ff

L.V.

7

gliss.

ff



Vln.*Solo



3

  

gliss.

3

Pno.

3

ff

Mar.

gliss.

 

Xyl.

f

Tba.



ff

(

3

ppp



ppp

  

Tbn.*2

ppp

ppp

Tbn.*1

3

ppp

alternate fingerings (timbre change)

Bb*Cl.*3



pp



ppp

 

 



3

ppp

alternate fingerings (timbre change)

Bb*Cl.*2



5



pp

3

 

 



ppp alternate fingerings (timbre change)

Eb*Cl.*1

 

pp

fff

alternate fingerings (timbre change)

Ob.*1

 pp





 +   




6

  

27

Picc.*(2)

Fl.*(1)

Fl.**(3)

Ob.*1

Bb*Cl.*3

Hn.*1

Tba.

 

 

 

ff



  

7

  

  

f

 

7

f

7

D

Glock.

Xyl.

  

 

7

  

REMOVE MUTE

 

f

 

 

(

 

fff

multiphonic G: lightly touch on D

     

3 

 

3



3

 

D    

 

p

 

SP G: 10

  



p

5

3

5

p

ppp

 

3

L.V.

3

5

   

 

     

  



fffp



 

 

fffp





 



  







FL SP G: 12

 

 

 



mf

 

 

 

fff

fff

 

ppp

 

       



fff

+

pizz.

 pizz.





 

 

 







  









 





ppp

 

 

ppp SP G: 10

 

3

 

ppp

SP A: 8

Vla. divisi

 

 

ppp

 

 

SP G: 2













 f

Vcl. divisi

SP G: 2













 

f



SP G: 2

MSP

 ff

ppp

 

 

SP G: 11



    



SP G:12

 

         fffp

 

 

fffp

SP G: 10

Vln. 1 divisi



SP

f

gliss.

3

ord.

 

ppp

p

  

 

ff

HP ASP

3

gliss.



p

ord.

 

Db. divisi

)

 

 pp

ff

  

p

ff

 

f

f

 

 

(gradually and slightly remove hand)

ff

L.V.



ff

 

Vln. 2 divisi



 

 



 

fp



   

Vln.*Solo

 

f

Pno.

pp

 

f

 

Mar.

pp

p

Timp.

f

 

  

ff

Bb*Cl.*2

 

ff

Eb*Cl.*1

Bsn.*1

 

SP G: 2

MSP

ff

 

 

   

 

 

 

ord.

pp

 

ord.

pp

  

p

  

p

 f


 Picc.*(2)  

 

 

30

Fl.*(1)

Fl.**(3)

Bb*Cl.*3

f

p

  

p

 

f

p

 

f

3

p

 

Hn.*1

 

 

 

 

ff

TO BASS CL.



 

  

gliss.

 

ppp

 

p

/o

 

7

 

ff

 

ppp

INSERT MUTE

(con sord.)

ppp

f

Hn.*2

E

ff

 

 

f

 



mp

Cbsn.

mf

3

 

f

Bsn.*2

 

mf

f

 

Bsn.*1



mf

   

Bb*Cl.*2

  

ppp Hn.*3

Hn.*4

f

 

Tbn.*1

(

)

(



gliss.

pp

Tbn.*2

Timp.

Perc.

Glock.

Xyl.

Mar.

f

  



 

 

L.V.

 

wood block



L.V.

 





 

3





mf

   



 

 





 

 

pp

ff



pp

fff

 

 



 

  



 

f

p

p

f

 

E







  

 

         

gliss

.

 

 



  

 



















 

 

 

 

(SP)











f



ord.



gliss.

ppp ord.

ppp

ord.

 

ppp

MSP

ord.





ff

ff

gliss.

MSP



(SP)

3



mf

3

3

   

  

 





p



FL SP G:10

MSP



 f ord.

 

f

(G: 2/1)





 

 



ff

3





pp

fff

ff

 

 





L.V.



(nat. harmonic gliss. on G)

  

ff

  



 



5

 



3

gliss.



ff

Vla. divisi

 



  

Vln. 2 divisi



3



  

 



ASP





ff



f

fff



ff

 

  

pp

HP

Db. divisi



  

pp

ff

Vcl. divisi

     



 



pp

ff

Vln. 1 divisi

f

 

gliss.

  

Vln.*Solo

)

 

Pno.

 

 

ppp

 

 


8

 Picc.*(2) 

33

Fl.*(1)

Fl.**(3)

 

 

B.*Cl.*(3)

Ob.*2

pp

 

  

Bsn.*1



Bsn.*2



  

ppp



ff





     





  

ff



       f



p

3

gliss.

      



ff

 

p

ff



ppp

f

ff

  





   

gliss.

Hn.*1



ppp

p

3



p



ff

 



Cbsn.

F

ff

Ob.*1

  

TO Bb CL.

 

pp

  

ppp

ff

  

Hn.*2

       ff

Hn.*3

Hn.*4

C*Tpt.*1

 

C*Tpt.*2

 

  

INSERT MUTE

Tbn.*2

Tba.

 

 

(

 

p

 

(

pp

pp

) 

( gliss.

 ) 

( gliss.

  

f

p

 

 

 

) 

   

gliss.

f

gliss.

3

    ff

Xyl.



 

Vln.*Solo

 ff

     



)

(

)

(

)

3

gliss.

 

pp



fff

 

  

   

 

  

 

  

  

  

  

 

  

 

  

 



 

  



  

 

  



    

    

  



  

  



  



  

  



 

     

  

    

gliss.

 

pizz.

  

(MSP) (

 

 

          

 

   

 



 



 















p

SP

p

 



 





p





 

p

 

 

 

)

gliss.

gliss.

gliss.

  

 

pizz.

  

  

 

pizz.

  

gliss.

ff



  

  



  

 

pizz.

  

gliss.

ff



 

ff

SP



 

(HP)

F

MSP

(SP)

  

     

     



  

 

pizz.

  

gliss.

ff



  

 

pizz.

  

gliss.

ff

pp

(HP)

     

 



ff

    





fff

   

 

    







ff

 

 

ffp

  

 

ppp

MSP

 





ff



ff

gliss.



          

       

ppp

MSP gliss.

HP MSP



 

fff

ppp

G: 9

 

 





G: 10

Vla. divisi







ppp

 

G: 11

 

 





G: 12 arco

Vln. 2 divisi



ppp

 

HP/ord. ord.



  

p

ffp

SP G: 12 arco

multiphonic G, D: lightly touch D and A SP

Vln. 1 divisi

Db. divisi

 

ppp



fff

  

Vcl. divisi

(

f

SP G: 12 arco

p

gliss.

f



    

gliss.

Pno.



f



ppp



 

f

 

) 

p

p



f



Glock.

Mar.

      

con sord.

INSERT MUTE (straight)

  



(con sord.)

CHANGE MUTE (straight)

Tbn.*1

Timp.

INSERT MUTE

 

   

  

  

ord.



 

ff

ord.



MSP



MSP



 

ff

 (

)

(

)

MSP



gliss.

f

MSP

 f

gliss.


   37

Picc.*(2)

Ob.*1

 

ff



Fl.**(3)

ff



Fl.*(1)

 

 

   

ppp

Ob.*2

Bb*Cl.*3

Bsn.*1

Hn.*1

  



    

   



  



    

   



ff

ff

  

  



ppp con sord.



ppp



   

C*Tpt.*2

ppp

Tbn.*1

Tbn.*2

Tba.

  

 

 





3

Vln.*Solo

(

)



gliss.

3



pp

Vln. 1 divisi

3



pp

   

    3



pp

   

SP FL G: 12

      

fff

mp

ff

 

    

  



pp

3



pp

Vla. divisi

   

    3



pp

   

 

 



G: 3, ord.

 Vcl. divisi

pp ord.

 

pp

(

  

(

pp

)





(

)

)

(

)

ord.



pp

  

  

(

)

(

 ) 

gliss.

 

gliss.



gliss.

 

 

(

)

gliss.

gliss.

   

   

                     

3

5

3

  

 SP

 

  3

3

5



  

ppp

SP arco G: 9





ff L.V.

 

 

 

 

 

 



 

 

 

3

gliss.

 

 

gliss.

 

 

 

ff

 

 

ff

  

  

            

5

6

 

   

 

   

5



3

pp

   

   

   

 

 

 

MSP/ord. HP/FL

  



 

           



  

 

     

MSP HP

MSP HP

ord. ord.

G 

ffpp

gliss.



  

fff

p

          

 







 

gliss.

fff

ASP



  

ff ASP

 ff ASP

 ff ASP

 ff ASP

 f

gliss.

gliss.

ff

ASP

 

)

   

3



ppp SP arco G: 10

gliss.

3

                     

ffp

 

 f



3

   

p gliss.

3

5

   

   



p

f

               

    

f



gliss.

   

      

f

ppp

ppp

 

ppp



f

3

ppp

  

 

arco D: 8

(

 

p

p

ppp

 SP

 ( ) gliss.

p

f

gliss.

ppp



f

pp

MSP/ord. HP/FL

SP arco G: 13

3



gliss.

ff

pp

 

  

SP arco G: 14-highest

G: 2, ord.



 

ffp

 

ppp

   

arco G: 11

3



 

ff



 

f

Vln. 2 divisi

Db. divisi

 

L.V.

 

ff



MSP HP

FL ord.

 

p

ppp



mp

 

ff

         

ppp

 

ppp

        

ppp

 

        

 

f

 

  

p



   

       

ff

ff

  

p

ff

Pno.

 

f



Mar.

pp

ppp

Xyl.

pp

 Timp.   Glock.

 

 p



 

ff

ff

     

ff

ppp

con sord.

 

C*Tpt.*1

    

 



9

 



ppp

p





ff

ff

ppp

Hn.*4

   

ff

ppp

Hn.*3

    





 

G   

  

Hn.*2

Bsn.*2

Cbsn.

ppp

Bb*Cl.*2

ff

  

 f

(

 

)

gliss.

ppp

(

ppp

gliss.

)

 

 

MSP



gliss.

ff

MSP

 ff

gliss.


10 Picc.*(2)

42     

Fl.*(1)

Fl.**(3)

Ob.*1

Ob.*2

     

  

 

   

Tbn.*2

 



Timp.

Xyl.

   

 

ppp

ppp

ff

ppp

 

 



 

 



 

 ff



 

ff

ppp

  

  

  

 



pp

ppp

5

         





   

5

      



 

ppp

ff

H ord. ord.

ord. ord.

HP MSP

fff

 

  

  



  



 





 

  



p

   

 

 

       

  

 



 

  

       

  

     



  

     



  

     



  

     



  

  

     



  



ord.

(

)

 

(

)

pp

ord. 3

pp

ST

MSP

 

  

  

         



         

 

 

pp



   

 ST

3   

  

   

ord.

   

3

  

 

pp

ord.

 

   

ord.

pp

ST

ST

 





 

ST

 

  

G: 2

 

G: 3

MSP

ST sul D

 

pp

(ord.)

 

pp

                                f

ST sul G

ord.

pp

(ord.)

 



G: 2

MSP

ord./MSP

ord.

    

mf

      

p



MSP

ord./MSP

    

      





 

pp

 

 

MSP

ord. ord.



MSP

MSP

pp

 

MSP

ST



ST

ST

SP FL G: 11-13

 

p MSP

                                  f

ord. gliss.



pp

pp

ord. gliss.

   

 

pp

G: 2

MSP

 

pp

ord.

ST

   



Vcl. divisi

 

   



MSP HP

ff



 

      

pp

     

G: 3



  

 

fff

 

(ord.) (ord.) G: 6

ord. ord.

HP MSP.

gliss.



 ppp

ppp

ppp



 

pp

5

p

Db. divisi

 

ff

ff

  



 

ppp



 

ppp



 

ff

ff







 

ff

ppp





 

ppp

ppp

Vla. divisi

H

                 

Vln. 2 divisi

 

         

Vln. 1 divisi

gliss.

 



pp

gliss.

)

(

 

gliss.

)

 

   

ff

ppp

ppp

 

(

 

Vln.*Solo

ppp

)



ppp

(

ppp

ff

 ppp

 

Pno.

 

ppp

ff

ff

gliss.

 

ff

 

 

Mar.



  



ff

pp

Tba.



ppp

Tbn.*1

 

 



  

ppp

ppp

ppp

C*Tpt.*2

ppp

    

 ff



C*Tpt.*1

ppp

 

Bb*Cl.*2

Hn.*1

Eb*Cl.*1

Bb*Cl.*3

    

mf

p

mf

mf

p

ord.

p



MSP

ord.

  

mf

p



MSP

ord.

  

p

mf

 


    48

Picc.*(2)



   

Fl.**(3)

ppp

Ob.*1

Eb*Cl.*1

Bb*Cl.*2

Bb*Cl.*3

Hn.*1

 

 

 

 

 

  

ppp



 



 

ff

 

 

ppp

ppp



 

ff

Tbn.*2

 

 

ppp



C*Tpt.*2

ppp

 

ppp



 

 

11

 

ppp

ff

 

C*Tpt.*1



Hn.*4

ff

Hn.*3



Hn.*2

ppp

Ob.*2



ff

 

Fl.*(1)

 

 

 

ppp

ff

ppp

 

mf



 

mf

 

ppp

 

ppp

ppp

3

ppp

 

 

  

ppp

ppp

mf



ppp

 

mf

ppp

ppp

mf

gliss.

gliss.





ppp

Tba.

ppp

 

Xyl.

Pno.



  

 









  





















 

















ff

ppp









  

ppp





















  



 





 







ppp

ff

MSP HP

(G: 6/1)

  

Vln.*Solo





 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  



 

 





 

 

 



 

 

ff



ord.

 



MSP

    

 

mf

pp

MSP

ST





MSP

              













MSP

              

(

)

MSP

gliss.

pp

ST

ff

ord.



pp

Vln. 2 divisi

ff

MSP

gliss.

pp ord.

ff

ord.



pp

Vln. 1 divisi





ff MSP

 ) gliss.

(



gliss.

(

ST

)



f

pp

Vla. divisi

 

    

mf

SP FL G: 11-13

ord.



pp

 Db. divisi

pp

)

)

(

MSP



gliss.

( gliss.

ST

)



f

pp

( ) ( ) () ( ) 

Vcl. divisi

(



G: 4

 3



() ( )  

p



  2

G: 2/1

ord.

ST

SP

  

f

 

 

 

 

 

  f

 

 

 

 

 

 

ord.

 

p

ST





 

pp

(

)

gliss.


12

I

   52

Picc.*(2)

Fl.**(3)

 ff



 

ff

ppp

    

Ob.*1

Bb*Cl.*2

Bb*Cl.*3





Hn.*1

 

 



ppp

 

)

 

ppp

  ppp

(

 

 

 

+



 

 

 









 

(

gliss.

)

  





 

  







gliss.

(

)

 

gliss.



   

 

gliss.



 

ppp

 

 

 

 

 



gliss.

 

 

 

  









 

  

 



  





 

 



 

  

 (ord.) (ord.)

 

I  

 

 

 

 

MSP HP

 



 

 

 

 

 



 

 

 

 





 

 

 

ord.

 

 

ord.

 

 

(

 

 

(

gliss.

( gliss.

ST

)



pp



f

gliss.



mp

pp

MSP

)



ST )

 

11 etc.

G: 12  (  ) ( ) ( ) ( )

(



ord.

)

G: 12  ( ) ( ) ( )

Db. divisi



ord.

)

f



ff

MSP

 

   

f

Vla. divisi

f

MSP

pp

 



mf

 

ord. ord.

 

+

(

 )

pp



pp

CHANGE MUTE (harmon)

mf

pp

Vln. 2 divisi

 

pp

 

mf

ff

 

 

 

ppp

f





 

pp

MSP HP



ppp

ord. ord.



 ) 

gliss.

 

ppp

ppp

pp

mf



gliss.

  

Vcl. divisi

pp

  

mf

ppp

mf

ord.





 

ppp

(

ppp



gliss.

ppp

)

 

 ff

mf



Vln. 1 divisi

 

ppp

(

 ppp

ppp

 

Vln.*Solo

mf



(

ppp

mf

ppp

gliss.

 

 

 

ff

ppp

 

 

ppp

ppp

ppp

  



Tbn.*2



 

C*Tpt.*2

Pno.

ppp

 

 

C*Tpt.*1

Xyl.

 

Hn.*4

Timp.

 

Hn.*3

Tba.

 

Hn.*2

 

 

ff

 



 

ppp

ppp

Eb*Cl.*1

to FLUTE

( gliss.

 ) 

SP G: 4

ST

 



3



2



 

p

MSP

 ff

( gliss.

)

 

11 etc.


  56

Eb*Cl.*1

Bb*Cl.*2

Bb*Cl.*3

Hn.*1



C*Tpt.*1

Tbn.*2

Perc.



 ff

 

ppp

13

 

ppp

 

ppp

 

ppp

ppp



 

 

ppp

 

ppp

gliss.

 

ppp

 

mf



 

large bass drum



pp

pp

 

 

ppp

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ord. ord.

  

Vln.*Solo

mf

 



 

ppp

 

Xyl.

Pno.

 

 

Hn.*4

ppp

 

Hn.*3

Timp.

 

  

Hn.*2

Tba.



 

 











 







 



 

 

 

 

 

 







 

 

 

 

 

  

  

 





 

 



 

  pp

 

(ST)

Vla. divisi (ST)

 

 

 



 



 

ST (G: 3)

  

 

Vcl. divisi

 

 

G: 2

 

 



 

 

  

 

 

 

 



 

 

 

   

 

MSP

ord.

   

p

ST (G: 2)

 



f

Db. divisi

(

)

( gliss.

)

(

ST )

pp


14

  59

Eb*Cl.*1

Bb*Cl.*2

Bb*Cl.*3

Hn.*1



 

 



 



 

 





ppp

Glock.

 

 

(

)

gliss.

f



(large bass drum)

f



f

p

ff

mp



 

ff

mp





mf

pp

f

p

ff

ff

  

Vln.*Solo

 

 



 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 



 

 

 



 

 

 

 

 

 

 

L.V.

ff

 ff

 

fff

ff

 

 

fff

fff

f

 

ff

ff

 

ff

 

CHANGE MUTE (harmon)



pp

ff

mf

ff



Xyl.

Pno.

  ff

ppp

Perc.



  ff

 

Tbn.*2

Timp.



C*Tpt.*1

  ff

  

Hn.*4

Tba.



 



 

 

 

 

 

ASP/ord. HP/FL G: 6, D: 4

 



 

 

 

 

 

 

 

 

 

   

 

 fffpp

 



MSP

 

 

ff

Vla. divisi

 



 



 



MSP

ff

MSP

 

ff

Vcl. divisi MSP

 

ff



MSP

 



MSP

ff

Db. divisi

 

ff


Pno.

 

 

ord. FL

J Vln.*Solo

15

K

J

62

 

 

  

 

ord.

SP

SP G: 3

etc.       



G: 2 3 etc.           



4

mf

    

            

 

 ) 



ord.

          

 

5

       

p

ppp

 

 

ppp

(

gliss.

SP FL

K

pp

mp

   

ASP

(G: 6, D: 3)

G: 6 5 4 etc.                                                                                                         



  

Vcl. divisi SP

    

            

 

mf

Db. divisi

ppp

ST ASP (half section)

ppp



   

L

 Fl.*(1) 



    

71

Fl.**(3)

Timp.

Mar.

(

) 3

mp



ppp

                    

 

          



ff

6

   

ff

gliss.

 

   

  

  

 

  

ppp

 

      

                                 





     

                               

  

 

ppp



  

mf





 



ppp

 

ppp



ppp

pp

mp

Vln.*Solo

) gliss.

 

Pno.

(

6

gliss.

 

  



 

                  



  



                 

ppp

                                                                   

 

mp

ppp

L ASP HP

      

ord. ord.

ord.

SP

 

     

ppp

5

5

6

7

7

   

7



6



5





  

f

  





p

5

 

5

6

fff

 



  

  

pizz.

ff

Vln. 1 divisi pizz.

ff

 

ord.

)

gliss.

(

)

(

)

ppp

Vcl. divisi

 

ord.

(

ppp

(

)

gliss.

7


16

  80

Fl.*(1)

Fl.*(2)

Fl.**(3)

Ob.*1

Ob.*2

Eb*Cl.*1

Bb*Cl.*2

M

Hn.*1



 

alternate fingerings (timbre change)



 

 

 

    



 

 

 

    

 

 

        

 

  

   

Hn.*4

alternate fingerings (timbre change)

ppp alternate fingerings (timbre change)

ppp

 

 

 

ff



Hn.*2

ppp

REMOVE MUTE

REMOVE MUTE

REMOVE MUTE

 

 

    



 

f



                 ff

3

3

3

3

3

                

 



                

mf

alternate fingerings (timbre change)



alternate fingerings (timbre change)





ppp

alternate fingerings (timbre change)



ppp

 

 

 

ppp

senza sord.

ff

pp

ff

f

p

3

pp

ppp

p

Bb*Cl.*3



ppp

senza sord.

 

ppp

senza sord.

 

ppp

mf

HARMON MUTE CLOSED

C*Tpt.*2

Timp.

Xyl.

Mar.

 

  

ppp

                     

 

   



                  



  

mf

   

 

 



 

  





 

   

 

ppp

  

 

9

  

9

  

9

9

  

  

9

    

 

 

 

 

   

(pizz.)

3

ppp

ppp

          

3

3

  

 

 

 

  

9

     

9

 

9

  

  

   9

  

  

  

3

9

9

9

9

Vln. 2 divisi



(

 



p

ppp

SP (open strings)

ord.

  

 

ord.



(

 

 

p

)

)

(

(

 ) 

gliss.

ff

 ) 

ppp

ord.

MSP

 



                                

9

f

9

9

9

SP arco

 

gliss. gliss.

ppp

gliss.

ff

 

Vcl. divisi

(

 )

)



gliss.

gliss.

 



(ord.)

 

Db. divisi

 

A: 6

 

 

ppp

mp

 

mp

(

)

(

)

(

)





pizz.



)

ppp

ff



ff

SP arco (A, E)

  

ppp

SP arco (A, E)

 

ppp

 



MSP

ff

(

)

(

gliss.

)

ppp



gliss.

mf

gliss.

 

gliss.

(

)

(

)

)

MSP

(

(

)

MSP

ff



MSP

ff

ord.

(

gliss.

ppp

ord.

gliss. gliss.

gliss.

ff

mp A: 4

(ord.)

mp



ppp

ord.

(

 

ppp

pizz.

ord.

MSP

Vla. divisi

SP arco

ppp

ord.

 

ff

  

                                  

ff

 

ff

ff

SP (open strings)

 

                 

Vln. 1 divisi (pizz.)

OPEN

   

9

  

mf

   

pp

SP

                       

  

 

CLOSED

ff



ppp

M 7



 

 

 

ppp

  

HARMON MUTE CLOSED

f

OPEN

ff

              

gliss.

Vln.*Solo

 

ppp



Pno.

  

 

C*Tpt.*1



MSP

ff

ord.

mp

ord.

mp

A: 6



gliss.

9


   

    

86

Fl.*(1)

Fl.*(2)

Fl.**(3)

Ob.*2

 

 

17

ppp

ppp

ppp

  

    

Cbsn.

   

Hn.*1

 

3

3

3

3

                       

ff

 

 



 



 

 

 

ff

ppp

ppp

mf

pp

 

 

simile

pp

 

ppp

 



 



ff

ff

 

 

ff

 

pp

 



 

 

ff

 



 



ff

 

 

pp

pp



 

 

 





ppp



ff

 

 

 



3

3

3

                       

ff

 

 

 



 



 



 



 

  

pp

)



gliss.

pp

 

 

 

 

 

 

 

 

 

      

 

  

 

 

 

 

ppp

ppp

ppp



fff

N      

  

10

  

10

10

 

(

)

gliss. gliss.

  

  

  

11

gliss.

  

12

  

  

12

  

12

  

  

12

  

                                                   

12

   12

MSP

12

12

)

(

 

12

ff

gliss. gliss.

ord. (sempre A, E)

 

f

Vln. 1 divisi

(

)

gliss. gliss.

pp

(

 

gliss. gliss.

(sempre A, E)



pp

MSP

 

Vln. 2 divisi

SP (sempre A, E)

 

f

 

pp

MSP

  

 

f

 

13

14

15

 

 

 







 

 

 

 

 

 

ord.

)

MSP

f

  

SP (sempre A, E)

 

pp ord.

pp (

)

ord.

MSP

gliss.

ff

(

)

(

)

(

gliss.

pp ord.

)

(

pp Vcl. divisi

(

)

(

)

(

gliss.

ord.

)

(

pp

Db. divisi



 

MSP

(gliss. on G and D)

Vla. divisi

pp

ff (

ff



ppp

 

ff

ppp

   

                        3

ffp

ff

 

pp

ff

  





ff

ff

 

pp

 

pp

pp



ff

  

Vln.*Solo

 

  

pp

   

Pno.

ppp

ppp





     

Mar.

ppp

ff

Xyl.

gliss.

ppp

ppp

mf

simile

Timp.

gliss.

pp

OPEN

  

C*Tpt.*2

3

3

 

C*Tpt.*1

Tba.

 

Hn.*4

                       

  

Hn.*2

                 ff

ff

Bb*Cl.*3

 

ppp

 

   

Bb*Cl.*2

N

ppp

Eb*Cl.*1

Ob.*1

 

A: 5   

  

A: 5

   4

   4

etc.

 etc.

  

A: 2

 



 



  

A: 2

 

 

  

 

 

   

gliss.

f

f

gliss.

)

)

gliss.

gliss.


18

  90

Fl.*(1)

gliss.

ff gliss.

Fl.*(2)





ppp



O

gliss.



gliss.

ff

ppp







Ob.*1



Ob.*2















Bb*Cl.*2

Bb*Cl.*3

Bsn.*1

Bsn.*2

Cbsn.

Hn.*1







C*Tpt.*2

 ff



f

pp



pp

 

ff

    ff

    ff

ff



ff

pp

   



ff

pp



  

       

 

 

 

pp

ff

  

   

(con sord.)

pp

CHANGE MUTE (straight)

 

   



    

ff

pp

ff

  

(con sord.)

      

 

 

ppp



  

ff

 

 



 





  







  









  



  



  

 

3

 

 

 

 

 

 

 

 

 



      







  



 

 

fff





      



(

(

(

       



       



     



      



      



       

 

O

        

         



fff

(sempre MSP) (sul A and E)

  

Vla. divisi

)

(

)

 

)

(

)

 

)

(



)

(

)

(



)

(

)

(

)

(

)

(

)

 

           

gliss.

 

           

( gliss.

mp

Vcl. divisi

 

( gliss.

mp

 

( gliss.

mp

Db. divisi



mp

( gliss.

gliss.

3

3

gliss.

3

SP

      3

gliss.

3

SP

      3

gliss.

3

SP

gliss.

3

     

gliss.

3

SP



gliss.

3

gliss.

SP



gliss.

gliss.

SP

gliss.

      fff



ffff

fff

      

gliss.

fff

3

     

fff Vln. 2 divisi



3

fff

3

     

fff

 

fff

 

pp

ppp

Vln. 1 divisi

ff

pp

mf



pp

ff

pp

CHANGE MUTE (straight)

 



ff

ff

gliss.

 

 



pp

ppp

 

 



pp

fff

 

 pp



 

  

      ff

pp



 pp



pp

ff

      ff

L.V.

ppp

     



ff

gliss.

 

pp

pp



 

 

 

Xyl.

ff

Tbn.*2

 

pp

Tbn.*1

Vln.*Solo

 

pp



pp



C*Tpt.*1

Pno.

ff

Hn.*4

Mar.



Hn.*3

Timp.

pp

 

Hn.*2

Tba.

ff

pp

pp

    

 ) 

SP HP

 ) 

SP HP

 ) 

SP HP

 ) 

SP HP

  

fff

  

fff

  

fff

  

fff

3

3

gliss.


Fl.*(1)

Fl.*(2)

    

ff

pp

    

ff

 

pp

pp

   

       

pp

   

  pp

     

con sord. (straight)

 

 

INSERT MUTE

pp

   

ff





   

















 

 

INSERT MUTE



  

 

  

 

 



   

 

gliss.



gliss.

 

gliss.

 

gliss.

Vln. 1 divisi

Vln. 2 divisi

gliss.

(

  

(

(

(

) ) ) )

 

 

ppp

  







MST

 

 

 

 

 

 

gliss.

 















gliss.

  

 

 

 

 

 

 

 

gliss.

  

 

 

 

 

 

 

 

gliss.

 



gliss.

 



gliss.



gliss.



gliss.



gliss.



gliss.

ppp

ord.

ppp

ord.

 

 

ord.

 

 

  

ppp



ppp

ppp

ord.

ppp

ord.



(

)

ord.



ord. FL

)



gliss.

(

)

gliss.

ppp

(

ord. FL

)



gliss.

(

)

gliss.

ppp

(

)

ord. FL

gliss.



(

)

gliss.

ppp

Db. divisi

 

(

)

ppp

Vcl. divisi



(

 

ppp

Vla. divisi

gliss.

 

 

p

 

 

ppp



ppp

ord.

 

ppp

     



 

ppp

  

  

ppp

  gliss.

 

PREPARE HAND TO MUTE

pp

ppp

  

ppp

pp

pp

ff

  

     

ff

    

PREPARE HAND TO MUTE

ff

   

  

  

        



con sord. (straight)

 

pp

ff



  





pp

pp

pp

  



 

ff

pp

pp

ff



pp

    

ff

      

  

pp





   

ff

  





ff

pp

Vln.*Solo

   

 

 

   

19





 

Xyl.

 pp

pp

 

 

Tbn.*2

pp

    

Tbn.*1

  

 

C*Tpt.*2



 

pp

      ff

pp

 

C*Tpt.*1

 

Hn.*4

  



ff

  

 

pp

    

 

pp

 

Hn.*3

   

Hn.*2



ff

 

Bsn.*1

Pno.

    

Bb*Cl.*3

Mar.

 

Bb*Cl.*3

 

 

Bb*Cl.*2

Timp.

C.*A.

pp

 

Ob.*2

Tba.

f

pp

 

Ob.*1

Hn.*1





Fl.**(3)

Bsn.*2

    

93   

(

)

gliss.

ord. FL



ppp

(

)

gliss.


20

    97

Fl.*(2)

Fl.**(3)

Ob.*1

Ob.*2

Bb*Cl.*2

Bb*Cl.*3

P

 



  

pp

  

 

    



mp

      

gliss. 3

 

Bsn.*2

Cbsn.

 

Bsn.*1

       3

3

f

gliss.

   

   

3

f

 

  

 

  

 

 

 

ppp

 

 

 

ppp



 

Hn.*2

Hn.*3

Hn.*4

Timp.

3

3



 

 

 



 

 

p

ppp

 



 

 



 

 

ppp



ppp

 

 

 

 



 



      

   

3

 

  

 

 

 

 



L.V.

 

  

p

p

 

ppp

 

ppp

 

 

gliss.

ord.



gliss.

mf

 5

SP              

       SP

              SP

       SP

      

SP 3

Vcl. divisi (

)

gliss.

(

)

gliss.

Db. divisi (

)

gliss.

      

SP







  

 

ff

 7

                        3

7

           

    

                       

                        3

            3

7

( gliss.

)

gliss.

)

gliss.

)

gliss.

)

7

7

 6

7

7

ff

6

7

7

ff

6

7

7

ff

5

5

5

6

5

7

6

5

                                       

7

7

ff

7

6

5

MSP

                                       

7

7

ff

7

MSP

 

 



 

 



 

 



 

 



 

MSP

 ff

5

MSP



6

MSP

ff

(

  

ff

ff

(

ff

ff

(

MSP

gliss.

3

MSP

7

7

                                        

gliss.

3

MSP

7

7

                                                                                 

gliss.

3

MSP

7

7



                                        

gliss.

3

3

7

7

MSP                                                                                  

gliss.

3

3

7

gliss.

3

3

MSP



gliss.

6

3



5

3

3

)

3

3

gliss.

3

3

(

3

3

gliss.

3

3

ppp

P

gliss.

 

p

 

 



 

 

gliss.

ppp



Vla. divisi

(simile)

   

f

gliss.

3

/     





f

       f

 

Vln. 2 divisi

gliss.

  

 

 

 

 

gliss.

Vln. 1 divisi

 

 3

  

  

 

   

f

 

gliss.

Vln.*Solo

   



 3

 



   

       3

Pno.

f

gliss.

Tbn.*2

      

gliss.

Tbn.*1

3

 

C*Tpt.*2

Tba.

 

p



 

 

C*Tpt.*1

 

p

ff

Hn.*1



 


  101

Bb*Cl.*3

Bsn.*2

Hn.*1

Bsn.*1

Cbsn.

 

Bb*Cl.*3

      



ppp

 

  

con sord.







  

C*Tpt.*1

Tbn.*1

Tbn.*2

Timp.

Mar.

Pno.

 

    

 



 

           

           

 



 



 

 

f

ppp





5

         

      

mf





 





 





 

6

5

6

5

  

  

5

  

    



5

  





pp

 

 

 



 

 

 



 



 

    







  

 

  

    



5

    







  

 

  

 

5

        

 

 

 

    

  

    

Q MST



MST



 

 



5

    







  

 

  



 

   

    

   

MST



 

MST

MST



 



 

MST

 



 

5

MST



 



MST

 



MST

 



 

 

 

 

mf



(

  



)



( gliss.

)

   



gliss.

gliss.

 

 

  

 

gliss.

 



 



gliss.



 

gliss.



gliss.



ppp



gliss.



gliss.



gliss.



gliss.

ppp

MST

ppp

Db. divisi

 

 

 

ppp

Vcl. divisi

 

ppp

Vla. divisi

MST

ppp

  

gliss.

ppp

    

 

 

ppp

    

 

ppp

ppp

         

mf

mp

 

mp

5

ppp

Vln. 2 divisi

  

  

pp

Vln. 1 divisi

  

pp





 

 

ppp

   

ppp

5

pp

 

 

5

5

  

ppp



 

 

5

 



pp

f

6

   

Vln.*Solo

 

                  

5



f

 

pp

                  

5

  

 

pp

f

   

         



                  

5

mf



   

5

ppp



ppp

           

 

f

 

C*Tpt.*2

Tba.

 

/  

5

 

ppp

 

pp

ppp

Hn.*4

con sord.

21



 

Hn.*3

ppp

 

Hn.*2

Q




22

  105

Fl.*(1)

Fl.*(2)

Fl.**(3)

 



 



C.*A.



(

Bb*Cl.*3

(

 



 

Bsn.*1

 

Bsn.*2

Cbsn.

Hn.*1

                    

 

 



Hn.*3



 

(





 

ff



ff

 

 

 

 

)

(

Tba.

Timp.

Perc.

Glock.

Mar.

INSERT MUTE

 

 

wood block

Vln. 1 divisi

Vln. 2 divisi

   









 



MSP

       subito ff

)

(

gliss.

)

(

gliss.

(

)

gliss.

(

)

gliss.

5





 

3



  

   





6

 

 

 

 

ppp

3

ppp

ppp

 

 

 

ppp

  

ppp

 



 



  



 



   

ppp

 

 



  











ppp





  



 

 

    6

mf

    6

 

  

   

3





6

3







  

6

   

ord.

 

   

  

 

  

3

ppp

 

 

  

5

3

  

     

ppp

 



 











   

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 









 







 

 



 

 



 

   

 

 

 

 

 

 

  ord.

 ord.

 ord.

 ord.

 ord.

ord.

ord.

ppp



6

   





ord.

( ) gliss.

6



 

   

 

 ord.

) gliss.

( ) gliss.

ppp

 

mf

ff

) gliss.



(

  

mf

 

 

ff

(

  



f

L.V.

( ) gliss.

  

ff

ppp

ff

ord.

  



  

   

ord.

  

ff

      

6



gliss.

3

ppp

( ) gliss.

 

gliss.

 

 

ppp

  

 



ppp

  

 



 

 

 

Db. divisi

 

 



 

 

Vcl. divisi

  

ppp

f

  

Vla. divisi



 

f

 

Vln.*Solo

  

 

 

ppp

 

Pno.



 

Xyl.

  

 

 



ppp

Tbn.*2

  

ppp

 

 ) 

 

 

 

Tbn.*1

 

 

C*Tpt.*2

ff

 ) 

 

C*Tpt.*1

ff

f

 

Hn.*4

 

3

gliss.

mf

  

Hn.*2

 

pp



ppp

       

pp

ppp

 ) 

mf

 

 

 

( ) gliss.

mf

Bb*Cl.*3

 

Bb*Cl.*2

mf

 

Ob.*2

 

ppp

( ) gliss.

mf

Ob.*1




23

R 109  Fl.*(1)  



ff

Fl.*(2)



 

  

  



 

  

 



 

ppp

ppp

ppp





 



  





 

Hn.*1



 



 

          



 

  







 

          



 

  





 

  



 



 

 

 

 

 

 



 



 

  

   

6

ff



 

ff

 

 

 

 

  



 INSERT MUTE

f



 

 

 

  

 

  



  

3

3

 

3

6





 

 



Timp.

 

ppp



ppp

  

(

)

( gliss.

)

(

)



 

  

(wood block)



ff

 



 

  

          

3

ppp

6



 

  

3

ppp

L.V.

Glock.

 

fff

Perc.

mf

Tba.

 

 

ppp

f

Tbn.*2

ppp

 

ppp

ppp

 

ppp

f

mf



con sord.





ff

  

 

 

f

Tbn.*1

 

ppp

 

  

          

3

f

C*Tpt.*2

 



 

ff

mf

C*Tpt.*1

 

 

           6

ppp

6

 

 

ppp

   

Hn.*4

 

ff

Hn.*3

  

ff

3



 

Hn.*2

  

ppp



ppp

 

 

          



ppp

Bsn.*2

 

 



6

 

ppp

ff

Bsn.*1

3

 

ff

 

Bb*Cl.*3

3

 

3

ppp

ff

Bb*Cl.*3



 

Bb*Cl.*2

  

C.*A.

 

ff

Ob.*2



Ob.*1

   ff

Fl.**(3)

3



ff

f

Xyl.

Mar.

ff

   

  

pp



  

6

          



ff

 

  





R

 

 

  

  

ppp

MSP

 ff

    Vln. 1 divisi

3

     

Vln.*Solo

 

ff

Pno.

  

ord.

gliss.

 7

3

p

  f



 



  

MSP

 



 

fff





6

5

gliss.

 

 

   


24

S

113   Fl.*(1) 

Fl.*(2)

Fl.**(3)

Ob.*1

 

3

 

 

 

 

 



6

Bb*Cl.*2



 

  

 

3

3

3

Hn.*1

ppp

   3

 

 

 

Timp.

Perc.

Xyl.

 

 

   



  

6

  

  

6

 

















ff

   

ff



  

   

3

   

 

  

 

  

 

  

 



3

 

 









ff

6

  

   

  









  

   

  







 

















ff

6

  

 

ff

   

  

6

ff

   

3



  

6

 

ff









 









ff



3

ppp

 3

ppp



 ppp



ff

mf

           6





 

 

 

pp

  

 

 

 

3

   

  

 

 







 

3

  

6

   

  



ff





mf

6

3

 

                     

3



3

ppp



 

ppp



ppp

f

(wood block)



ppp

mf

f



 

 



3

  

6

3

          

 

Vln.*Solo

3

          

3

 

Pno.

 

ppp

ppp

6

mf

ppp

Tba.

 

Tbn.*2



  

ppp

Tbn.*1

ppp

6

3

 

3

 

C*Tpt.*2

 

ppp

 

 3

ff

 

Hn.*4

ppp

 

3

Cbsn.

ppp

ppp

  

ppp

 

Bsn.*2

ppp

 

Bsn.*1

 

ppp

ppp

   

 

Bb*Cl.*3

  

  

Bb*Cl.*3

  

ff

 

3

ppp

Ob.*2

           

 

 

 

   

 

 

 

 

 

 

 

 

 

 



 

ff

 

 

 

           ff



 



 

 









 



 



 

 

 

3

ppp

6





ppp



3





S ord.

 p

MSP

SP

gliss.

5

5

3

f

  

 

    

7

6

6

    fff

    

   

   

7

    

   

7

   

 

6

   

  5

 


  

117

Fl.*(1)

Fl.*(2)

Ob.*1

  









 



Bb*Cl.*3

Bb*Cl.*3

 

 

ppp

  



  

 

  







 







   





 

T







 

ppp









3

 

ppp

 3

ppp

3

ppp

3

ppp

  



  









ppp

ppp



ff

6

25

3



 6



 

3

3

 

Bsn.*1

ppp

ppp

Bb*Cl.*2

ppp

 

C.*A.



3

 

Ob.*2

3

  

Fl.**(3)



  



 



ppp

ppp



ff

 

  



 

 



 

ppp

ppp

mf

  

Bsn.*2

mf

Cbsn.

Hn.*1

     

 

Hn.*2

Hn.*4

  

 

ppp

ppp

 

REMOVE MUTE, PREPARE HAND

ppp

3

6

Hn.*3

 



f





f



ppp

f

ppp

C*Tpt.*1

C*Tpt.*2

 

ppp

Tba.

Timp.

Xyl.

 

  

Vln. 1

  

 



 f





 



     

 

3

 

ppp

3

  

 

 

 

6

 

 

 

 

 

 

 

3

 

 





  

 

 

  

 

 

ff

 

 

 

 

6

ff

T   

 

 5

ord.





 



SP

gliss.

5

 ff

6

7

6

mp

 

 

MST non vib.

 

ppp

MST non vib. (half section)

 

ppp

 

gliss.

Vln. 2 divisi



f

ppp

ppp

 

 6

ppp



 

Vln.*Solo

 

ppp

Pno.

 

Tbn.*2

 

3

ppp

  

Tbn.*1

  

MST non vib.

ppp

5


26

  Fl.*(1) 

3

 

3

120

Fl.*(2)

Fl.**(3)

Fl.**(3)

 

Ob.*1





             6

6



Bsn.*2

Hn.*3

             6

6

ff

C*Tpt.*2

Tbn.*1

 





 

 

 



 

  

3



 

 

   

 

  3

  



 

   



 

  

 

 

 

 

 

 

 

 



  

 

  

 

  

 

 

 

 

  ppp

Timp.

 

   

Mar.

 

Pno.

     

   



      



3

 

3

 

 

ppp

 

 

 

3

ppp

ppp

)

(

) 

gliss.

f





 









ppp



 

ppp



 

ppp simile

ppp

 

 

 

  



ppp

  

ppp

3

gliss.

ppp

    

ppp

 

    3

ord.

   

  

  



    

    

 

   

mf







 

 

 

   (

 Vln. 2 divisi

 

Vla.

 ) 



gliss.

mp





  

 

 

ff

           

5

 

    5





  

   

 

6



(

 



ord. (half section)

pp

) 

  

( ) gliss.

MST (half section)

 

MST (half section)

 

(

)

 (

gliss.

)

SP

f

 7

ppp

 

gliss.

(MST)



 

( ) gliss.

(MST)

 

(ord.)

 

(MST)

ppp

Db.

 

U

   

ppp

Vcl.

 

   

3

7

Vln. 1



3

ppp

 

ppp

MSP

Vln.*Solo

     

      

   

 

3

   

ppp

pp

   

  

/  

ppp



 

 

 

 

 

ppp

3

ppp

 



 

Xyl.

 

ppp

 

3

ppp

Tbn.*2

 

3

ppp

 

 

  

 

 

(

ppp

3

ppp

ppp

 

ppp

ppp

ppp

 

  

ppp

ppp

  

 

 

 

ppp

   

 

ppp

3

 

 

 

 



  

ppp

   

 

  

 

 

3



   

 

C*Tpt.*1



ff

            

Hn.*4

   

 

 

  

Hn.*2



Bsn.*1

 

3

U 

ff

 

3

  

 

ff

             3

 

  

3

 

ff

 

Bb*Cl.*3



3

 

Bb*Cl.*3

Hn.*1

6

 

Bb*Cl.*2

   

ff

            

 

C.*A.

Cbsn.

6

 



 

Ob.*2

            

gliss.


27

 

  

 

  

 

 

 

125

Fl.*(1)

Fl.*(2)

      6

Ob.*1

Ob.*2



Bsn.*2

Cbsn.

Hn.*1

C*Tpt.*2

Timp.











     

 

     

6



6

 

   

 

 

 

   

 

 

ff

 ff

 ff

ff

ff



 ff



 ff

Pno.



 

 

 



REMOVE MUTE, PREPARE HAND

 



ff

      6





ff

 

ppp

 

ff

 



  



ppp

 ff



INSERT MUTE

ppp

 

3

ff

 





6





   

 

 



 

 



   





  

  

   

  

  

  

   

  

  

      

  

      

3

 

fff





)







 

7

 

  







   

  





7

6

6

mf

  ppp ST

 

mp

ppp

ord.

ST

 ) 

(

 

(

 

ppp

ord.

ST

 mp

ppp

ord.

ST

(

mp

 

ppp

Vcl. divisi

 

(

ppp

  

  

  

ff

6

  

  

7

gliss.

(

 ) 

gliss.

(

 

ff

   

)

 



  7

SP

 



)

 ) 

( gliss.

)

 

ppp





 ) 

gliss.

(

ff SP

 SP

 SP



SP

)



)

SP

 ) 

( gliss.



mf

 )

(

)

gliss.

MSP

 ff

(

 ) 

( gliss.

)

 

ff

MSP

 ff

MSP

 ff

 7

mf

ord.



mf

MSP

gliss.



ASP

 

      

mf

(



mf

(

6

5

5

ord.



gliss.

ppp

gliss.

mp

mp

)

3

ord.



gliss.

 

ppp

ST



gliss.

ppp

SP

6

3

 

ppp

3

ff

   

ff

  

 



  

7

)

     

ppp

ST

 

ff

(

Db. divisi

      6

6

Vln. 2 divisi



ppp

              

(

 

6

  

Vla.

ff

      

(

     

ppp

Vln. 1 divisi

ord.

3

 

 

ff

6

     

3

 

ff

3

Vln.*Solo

6

 

6

 

3

gliss.

ppp

 

ff

3

mf

 



3

ppp

Mar.



ff

3

  

  

ff

 

Xyl.

ff

 

 

C*Tpt.*1

 

Hn.*4

Tbn.*1

6

 

Hn.*3

ppp

    

  

Hn.*2



 

ppp

Bsn.*1

Bb*Cl.*3



ff

Bb*Cl.*3



ppp

6

Bb*Cl.*2

 

3

ppp

     

C.*A.

ff

3

ppp

ppp

Fl.**(3)

 


28

  



 



129

Fl.*(1)

Fl.*(2)

 

 

Ob.*1

Ob.*2

Bb*Cl.*2

Bb*Cl.*3





 



V



 

   





 

  

 

  

 

 

   

 



 

 

 

 

  



 





 



 

 

 

 

 

Hn.*1

  



  



 



Hn.*2

Hn.*3

Hn.*4



C*Tpt.*1





 

  

 

  

 

   

  

 

 

  



Tbn.*2

Tba.

  

 

 



 

ppp

 

f



Pno.

Vln.*Solo





 

6

ppp



 

      

    

6

5

 

  

 



 

    mp



   ST

 

 

(

)

 

(

ST

 

(

ST



(

ST

 

 

 

(

)

(

)

(

)

(

(

)

(

ppp

Vla. divisi

  )

gliss.

  

  

(

ord.

Db. divisi

pp

 

(

ord.

 

pp

 

 

  

      

    

  

       

 ) 

gliss.

 )   ) 

gliss.

gliss.

    

)

(

ord.



gliss.

    f

MSP

ord. (

gliss.





gliss.

fff

 

(

)

gliss.

(

)

gliss.

(

)

ST

 

mf

pp

MSP

ST



 

 

mf

pp

MSP

ST

 

(

)

(

)

(

)

)

(

(

 )   ) 

mf

 

 

ppp

p

MSP

ST

ff

gliss.

)

gliss.

pp

 (

gliss.

gliss.

pp

ST

gliss.

pp

ST

 

gliss.

pp

ord.

)

f

ST



mf

 )

    

MSP

 )

ppp

mf

gliss.

  

ff

MSP



pp

 

MSP gliss.

 ST

 

(

Vcl. divisi



pp

MSP

 

ppp

fff

ST

   

 

MSP

ppp

  

ppp

 

ppp

6

ppp

 

mf

ST

 

                       

ppp

Vln. 1 divisi

3

ord.

3

  

  

 

V

    

Vln. 2 divisi

  

 

ppp

 

f

 

f

ppp



ppp

f



 



           

3

  

ppp

ppp

Xyl.

 

ppp

ppp

  

INSERT MUTE

ppp

f

con sord.

 

 

ppp

3

Tbn.*1

 

 

ppp



 

 

ppp

   

ff

ppp

ppp

C*Tpt.*2



 

ff

Cbsn.

 

ppp

  

 

  

ppp

 

ppp



ff

Bsn.*2

   

 

ppp

3

  

 

ppp

3

ff

3



 

 

ppp

3

 

            6



 

ppp

3

  



3

  

 

3

ppp



Bsn.*1

Fl.**(3)



 

) gliss.

pp

MSP

gliss.

 ff

ord.

ASP gliss.

 

ff

  pp

(

) gliss.




 Fl.*(1)  

Fl.*(2)

Fl.**(3)

Ob.*1

Bb*Cl.*2

Bb*Cl.*3

3

    

6

ff

6

ff

   

 

   





 

   



6

ff



              6

 

   

 

   

  

ppp



ppp

 

 

Tba.





 

 



 

Vln. 1 divisi

Vln. 2 divisi

      

Vcl. divisi

 

  

  

 

 

 

 

(D, A)

 (

  )

(

 ) 

(

 )    )

  

gliss.

(

 ) 

 

)

 



 

 

 

f

f

 

   

   

 

  

fffp

  

 

    

  

ppp

       

ppp

MSP/ord.

ppp

 

 

      

 

         

   

 

   

        

 

fffp

ord.

 

mf

pp

MSP

ord.

 

mf

pp

MSP

ord.

 

 

(

(

pp

ord.

mf

pp

MSP

ord.

 

(

(

pp

ord.

 

pp

 )  

3

(



  

  

                           



  )

6

  3

gliss.

gliss. (

) 

gliss.

) 



(

( gliss.

)

)

)

 

 

 

 

  7



gliss.

) 

(

( gliss.

)

)

( gliss.

)

(

)

gliss.

  ppp

(

 ff



 

   



  

  

   



          

gliss.

 )  

(

(

)

(

)

gliss.

  

  

ppp

 

  



  

 

 

 



  

7



6



f

p

MSP

ord.





f

p

MSP

ord.

MSP



(

)  gliss.

(

)

gliss.

(

gliss.

ord.





f

p

MSP

ord.



(

) gliss.

(

)



gliss.

p

ord.

MSP





(



(



(

)

p

)

gliss.

p

MSP



 

ppp



) gliss.

MSP



ord.



   

ord.

ff

MSP

 gliss.

 

pp

ord.

) gliss.

  

MSP

ff

)

ppp

SP

f

)



  

 

f

) 

ppp

   

f

  )

(

ff

3

6

 

  

ff

            

3



6

MSP

ff



        

ppp







 

ppp

   

   

(

(

  

3

    MSP/ord.

  



ppp

 

gliss.

f



 

ppp

 

)





mf

(

ppp

 

ord.

   

ppp

ppp

ff

ppp

 

ff

Db. divisi

ff

 (

ff

)

 



6

 



 

ppp

ppp

       

 

29

MSP

)





gliss.

ppp

 

mf

(

 

ppp

ppp

MSP

 

  



gliss.

   

ppp

 

mf

gliss.

 



(  )

3

(

gliss.



gliss.

ppp

MSP

gliss.

3

ppp



gliss.



3

  

   

 

W gliss.





  

 

3

fff

Vla. divisi

 

 

6

3

(

 

 

 

ppp

ff

 

 

ppp

ff

   

fff

3

Vln.*Solo

  

         



 

 

  

Xyl.

6

gliss.

ppp

 

ppp

Tbn.*2

ff

ppp

          

 

ppp

6



Tbn.*1

ppp

3

  

(

         

C*Tpt.*2

 ppp

3

  





 3

 

 

 

3

 

 

ppp



3

  





 

  

C*Tpt.*1

Pno.

Hn.*4

Mar.



ppp

 

ppp

 

 

ppp

 

ff

 

 



Hn.*3

 

   

 

Hn.*2

Timp.







             

3

   

ff

6

3

ppp

              3

 

  

3

3

 



             

Bsn.*2



ff

             

Bsn.*1

Hn.*1

6

Bb*Cl.*3

Cbsn.

3

Ob.*2

W

         

134

 

ppp



) gliss.


30

 Fl.*(1)  139

Fl.*(2)

Fl.**(3)

Ob.*1

Ob.*2

C.*A.

Bsn.*2

Cbsn.

 Hn.*1  Hn.*2

Hn.*3

Hn.*4

C*Tpt.*1

Tbn.*1

Timp.

        

6

 3

  

  







 













 





   

      

 

 

6

 

3

 



 3





   

6



6

 

 











gliss.



  

 

 

ppp







 



 

ppp

  

3

 

6

 

ppp

 

ppp

X 

  Vln. 1 divisi

 

 

   

      

3

 







 







 

3







 

 

 



 

 

ppp

     







 









 ff













 

 



  

6



  



7



ord.

 

   

 

6

5

mf





(

)

(

)

(



gliss.

6

 

7

gliss.

 

 

(

)

)

MSP

(

gliss.

)



)

(

)

gliss.





MSP

(

)

 

(

)

 

(

)

MSP

(

)

MSP

ff



gliss.

MSP

ff



) gliss.

pp

  ff



) gliss.

MSP

  ff

ord.

 

 

 (



)

(

)

gliss.

 

 

 

ppp MSP

  ff

ord.

MSP



   

pp

ff

ppp

ff

(

ord.

  

    



)

(

MSP

ord.



ff

pp

(

MSP

 

MSP

gliss.

(







 

ff

ord.

MSP

 

ff

3



ff

ord.



 

gliss.

 

3

pp

 

ff



ord.

MSP

 

gliss.

  

pp

ppp

)

3

ord.



ord.

(

 

 

7

f

             

ppp

f

f

  

ppp

ff

MSP

gliss.



ppp

)

)

 

(

(

 

MSP



)

gliss.



ff

(

)

6

ord.

(

f



ff

pp

gliss.

3

f

gliss.



f

Vla. divisi

      

f

   

6

ppp

MSP

ppp

)

gliss.



6

f

Vln. 2 divisi

3

(

(

 

)

)

3

 

(

gliss.



  

 

MSP

gliss.

 

ff

SP

 

 

 

5

gliss.

ff

      

ord.







   

  





  

6

 

3

5

ff

     

ff

    



ff

6

 



      

 

 

6

     

  

3

ppp

                 

   

6

ppp

gliss.

   



fff

ppp

3

ppp

f



  

ppp

mp





  

  

ppp

3

3

ppp

3

gliss.

3

 

ff



3

ff

          

3

          

mf

Db. divisi



ppp

ppp

ff

3



 



ff



        

3

  

Vcl. divisi



Vln.*Solo

6

  

ff

Pno.

3

 

Xyl.

Mar.

X          

Tbn.*2

Tba.

Bsn.*1

Bb*Cl.*3

Bb*Cl.*3

Bb*Cl.*2

 

ppp




  143

Fl.*(1)

Fl.*(2)

Fl.**(3)

Ob.*1

Ob.*2

C.*A.

Bb*Cl.*2

Bb*Cl.*3

Bb*Cl.*3

Bsn.*2

Hn.*1



ppp

  ppp



  ppp

 

  ppp

    

 

 

 

ppp

  

 

 

 

 

 

     

ppp

  

 

 



  

 



  

 

 

  

fff

  

 



 

 

   

 

ppp

 

 

 

 

 

  

 

 

 

 

   





3

 

 

   

 

6

   



 

 

 

 

   

  

 

  

ppp

 

 

   

 

pp

 



   

6

 

 

 

  5





3





  











 







 



 

 

 





 







 



 

 

 



 





 





 



 



   

 

 

6



 

 

(

ord.

 

(

mp

(

mp

ord. (

  )  )   )    )

6

 

(

(

mp

gliss.

(

)

(

mp

gliss.

(

)



 





   

 

   

MSP



 







 

 

   

 

 

 

 

MSP

( gliss.

)

MSP



fff

gliss.

(

)

MSP

 )   ) 

( gliss.

)

MSP



 ) 

(

 ) 

fff

( gliss.

)

MSP

fff

( gliss.

)

 

ppp

 

fff

( gliss.

)

MSP

ord.

mp



fff

 

MSP

7

ord.





fff

 

 

fff





fff

mp

 

 

fff

  

 

 



  6

5

ppp

6

gliss.



fff

5

 

 

  

Y  

          

mp



 

3

ord.

 



3

mp





pp

 

pp



 

 

  

 

pp



 





pp

7

ff

ppp

ppp

 

ppp



 

ff

ff

  

ppp

 

ff

f



  

3

ppp

fff

 

fff



31

ppp

6

fff

ppp

3



  

3

fff

   

 



  

6

3



ppp

6

fff

ppp



  

ppp

  

ppp

6



fff

3

ppp

 

  

6

3

ord.

 

Db. divisi

   

 



 

  

3

ord.

Vcl. divisi

ppp

 

  Vla. divisi

   

6

 

 

ord.

 

Vln. 2 divisi

 

3

 

ord.

Vln. 1 divisi

3

mf

 

3



    

Vln.*Solo

3



Pno.

 

 

 

 

Xyl.

pp

 

 

Tbn.*2

3

Tbn.*1

   



C*Tpt.*2

 

pp

 

      

     

C*Tpt.*1

Mar.

 

Y

Hn.*4

Timp.

ppp

 

Hn.*2

Tba.

 

   

Bsn.*1

Cbsn.

 

ppp

 

MSP

fff

   

 

   

 

7

   

 

6

 


32

  147

Fl.*(1)

Fl.*(2)

Ob.*1

Bb*Cl.*2

Bb*Cl.*3

 

  

 

  

 

Z

 





ppp

 

3

  

 

 





ppp

 

3

  

 





ppp

 

3

 

 



ppp

 

3

Bsn.*2



3

Bsn.*1

ppp







ppp

ppp

Cbsn.

Hn.*1

  

 

 

 



 3

ppp

 



3

Hn.*3

ppp

  

Hn.*2

 

ppp

 



ppp

Hn.*4



ppp

C*Tpt.*2

 

 

 

 

  

    

Pno.

Vln.*Solo

 

   







 



    

 

  

   





   

  5

 

 

 

   

 



 

 

  

 





 

 

 





 

 

3

 

 















f

f

ppp



 

 





ppp

 

 



 

 

  

 

 

   7



 

ppp

 

 

7



5

 

 

6 etc.



7  

6



gliss.

ff



 

 



6 etc.







 







7

 6 etc.    

 

 

ppp

 



 

SP G: 8

 

  

 



 

 6 etc.

 





7





 

 

SP G: 8

 





ppp

 

MSP

ppp



ppp



f

ord.

 

 

Z

SP G: 8

 

mp

 

SP G: 8

3

  

Vln. 2 divisi

 



SP G: 8

Vln. 1 divisi

 ppp

 

Tbn.*2

Xyl.

 

Tbn.*1

Tba.

mp





 

 

7

 



 

 

6 etc.

ppp SP G: 8

Vla. divisi



  

 



 

ppp



 ord.

fff



MSP



7

 

ppp

Vcl. divisi

ord.

 

 

ppp MSP

ord.

fff

 

ppp

Db. divisi



ord.

 

ppp



6 etc.




  151

Bb*Cl.*3

33

AA 











ppp

Bb*Cl.*3

ppp

 

Bsn.*1

Bsn.*2

Cbsn.

Hn.*2

ff



ff



ff

 



 

Hn.*4

Tbn.*1

  

  

Pno.

 

 

ppp



 

6

5

 

 

 



 

ppp

 

 

 



 

8 

 

 

 

ppp

  

  

Vla. divisi



  

 

  

 

 

pp

7 etc.



  

 

8  

6 etc.

 



  7

 

7 etc.

 

8 

6 etc.





 

 

 



 

 

ppp

ppp

 

   

  

  

 

  



 

 

 



6 etc.

 





8



7 

 





 

 



G: 10

   





 

 

(

gliss.

)

ppp

   

MSP



gliss.

ff

ord.

(

ppp

gliss.

)

8 etc.

Db. divisi





)

6

 

 

 

  

 



G: 8



 7  

9  

5

  

(



G: 8

 

7 etc.   

 

 



ord.



 

  



 

 



 



  

 G: 8

 

  

 

G: 9

  

 

 



 



 



 G: 10

  

 



7  

 



   



 

ppp

AA

ord.



f

G: 9

f





G: 8

f

 

Vln. 2 divisi



G: 9

 

ppp

G: 8

 

ppp

 

G: 9

 

 

ppp

 

 

Vln. 1 divisi

ppp

Vln.*Solo

ppp

ppp

 

ppp

ppp

ppp

Tba.

ppp

 

ppp

Tbn.*2

f



ppp

Hn.*3

 

ppp

(

)

MSP

 ff

gliss.


34

  156

Bb*Cl.*3

Bb*Cl.*3

ff

ff

 

Bsn.*1

Cbsn.

Hn.*2

ff

 

 

ppp



Hn.*3

 

 

 

  

 









ppp

Tba.

 

ppp

Timp.

Pno.

 

Vln. 1 divisi

 Vln. 2 divisi

 

 

 

ppp

ppp

ppp

f

 

ppp

7

6



5



f

  

7 etc.

 

 

 

ppp

ppp

 





f

f

   

ppp

6

5

7

 

ppp

7

       

gliss.

 

ppp

6

5

6

5

5

6

gliss.

ff

 ff

 









5

6

7

7

                                                    



 



 



 

 

 

  



 

 



8 etc.   

    

 

 

 





 

  



 



 



(

)

 



 



 

  

7 etc.



 

 

 

 



   

)

Db. divisi (

)

( gliss.

)

pp

 

pp

gliss.

 





 7 



 







  

  

 

 



 



8



  

 





pp



pp



11  

  

pp

7 etc.



 

 

  

 G: 8

 





 

  

6 etc.

 

 



8 etc.

G: 12

(



gliss.



Vcl. divisi





div.



 

G: 9



 

 



10 etc.



 

 

   

 

9  

 

 

11   

 

 

  

 



G: 8

  

8

 

   

G: 10

 

 





  

  

 

6 etc.



 G: 9

 

9  



pp

 





  



 

6 etc.   



ord.

G: 12

 



Vla. divisi

f



 

 



ppp

BB MSP



f

7



ff

 

ppp

       

Vln.*Solo

 



ppp

Tbn.*2

REMOVE MUTE, PREPARE HAND

ppp

Tbn.*1



ppp

Hn.*4

ppp

ff

ppp

ff

Bsn.*2

BB

 

 7  

 




  161

Ob.*2



 











ppp

Bb*Cl.*2

Bb*Cl.*3

ppp

ppp

Bb*Cl.*3

ppp

Bsn.*1

Bsn.*2

ppp

ppp

Cbsn.

35

CC

ppp

ff

ff

ff

ff

ff

ff

ff

 

Hn.*2

Hn.*3

Hn.*1



  

ppp

Hn.*4

ppp

C*Tpt.*1

Tbn.*1

   

ppp

 



 



ppp

Tba.

Timp.

 



gliss.

 

 



pp



 

 









 

MSP

        

7

gliss.

7

6

5

  

gliss.



 

 



 

G: 12

Vln. 2 divisi

 Vla. divisi

 







 

 

 

  

 



 



 

 

 



 

 

 

 



6 etc.

 



10 etc.

sempre8 ppp 11

 

 

ppp





 

10 etc.



 

 

 

8  



 

 



  

     

 

  







 

 

 



 

   

  

ff

  

 

   7 etc.





  

 

  sempre SP 

A: 7

  

 

 



sempre ppp

 

 

    

  





 

CC

ord.

sempre SP (non harmonic)

  

 

G: 9

 

 

 

 

5

sempre SP (non harmonic)

fff

Vln. 1 divisi

sempre SP A: 6   

 6



  



  

 

 

 

 

5

 

sempre ppp



  

5 etc.

sempre ppp

 

 

 

ppp

 

ff

ppp

ff

ppp

Db. divisi

ff

ppp

  sempre SP

(non harmonic)



 

G: 10

   

Vcl. divisi

 

pp

Vln.*Solo

ppp

Pno.

ppp

Tbn.*2

sempre ppp


36

   166

Ob.*2

Bb*Cl.*3

Bb*Cl.*3

Bsn.*2

Cbsn.

Hn.*1

Tbn.*1

Tba.

Timp.

Pno.

Vln.*Solo

  

  

 

  

  

pp

pp

/        







 



 



ppp





 



f

f

f

f

f

f

f

(ord.)

 

 





  



MSP

 

5







 

   

 

 





 

  

  

5

gliss.

 



 

 

 

  

 



  mf

 

ppp

 

   

  

 



 

Db. divisi

 



5

5

 

6

6





ppp



A: 7





 

ord. div.



 

 

 

pp

 

ppp

pp

pp

  





6





 

 

7





6

 

 



 

A: 7



A: 7



7

 



5 etc.   



6

6 etc.

  

  

 

 

5 etc.

  

  



(

)

gliss.

(

)

(

)

(

)

gliss.

(

)

(

)

(

)

gliss.

(

)

(

)

(

)

(

)

ppp

ppp



  

6





)

 

ord.



7

(

ord. div.

gliss.





4 etc.

  

7

ppp

f



5

 

 

                                        



ord.

DD





 

ppp

A: 8

    

 

A: 6

 

  

4 etc.

 

5

ff

  

6

Vcl. divisi



ord.

     

5

gliss.

  

  

Vln. 2 divisi



  

Vla. divisi

ppp

 

pp

ppp

f

 

Vln. 1 divisi

pp



Tbn.*2

  

C*Tpt.*1



Hn.*4

pp

ppp

Hn.*3

pp

  

Hn.*2

pp

 

Bsn.*1

pp

 

Bb*Cl.*2

DD

  

gliss.

 




37

 



















172

Fl.*(2)

Fl.**(3)

Ob.*1

Ob.*2

Bb*Cl.*2

Bb*Cl.*3

pp

pp

pp

pp

pp

pp

Bb*Cl.*3

pp

Bsn.*1

Bsn.*2

pp

pp

Cbsn.

Timp.

Pno.

pp

 

7



gliss.

ff

5







9

Vln.*Solo

6

5

6



 







7





10













11















ff



 

fff

Vln. 1 divisi

 

  

 

5 etc.   

  



 



Vln. 2 divisi



  

Vla. divisi

 



 

 

 A: 7 

13

 





 

 

 



6



7



12



  



6

(

)

MSP

gliss.

 

5

11

5



pp

 pp

ord.

10

 



(

)

 

MSP

gliss.

ff

(

)

MSP gliss.



(

)

 ff



5



9



10

5



5





5

11



12

gliss.

 



A: 6

5  



A: 6



  

  5

5 etc.









   7

 

5 etc.





 

 

MSP gliss.

ff

5

gliss.

Db. divisi



5

 

ff Vcl. divisi

mf

6

6

   



A: 8







A: 7

MSP

12

gliss.

   

7

                     

 

6 etc.

 




38

    175

Fl.*(2)

  

Fl.**(3)

Ob.*1

Bb*Cl.*3

Bsn.*2

ff

ff

ff

  

ff

  

Bsn.*1

ff



Bb*Cl.*3

Hn.*1

 

 

Bb*Cl.*2

ff

  

Ob.*2

Cbsn.

 ff

ff

 

ff

 

ff

  

 

 

Hn.*2

Hn.*3

/     ppp

 

ppp

 

Hn.*4

 

ppp

ppp

 

C*Tpt.*1

ppp

 

C*Tpt.*2

 

Tbn.*1

 

Tbn.*2

 

Pno.

  

ppp



 



ppp

Timp.

ppp

 

ppp

Tba.

 

 

5

6

6

6

6

7

7

7

7





5





6









6





6















 

6













7













7

















7





MSP 13

14

14

15

 gliss.                                           

15

15

 A: 7   

gliss.



  

  



 

 

 



 

 



 

4 etc.



6

5 etc.

 



  

 

 



  













7





















 



  

 

   7



 



A: 8



   

  

  



  



















  

 

 

 

















 6 etc.



  



 

    

A: 9

 



Db. divisi

7



 



A: 9

 

A: 8

  

 

  

 Vcl. divisi

 

4 etc.





Vla. divisi

 

ffff

   

Vln. 2 divisi



15

ff

Vln. 1 divisi









ASP 13

Vln.*Solo

7

gliss.

  7

8 

  


39

EE

 Fl.*(2)   

  

 

 

  

 

  

  

 

 

178

pp

Fl.**(3)

pp

Ob.*1

pp

Ob.*2

pp

Bb*Cl.*2

pp

Bb*Cl.*3

Bb*Cl.*3

pp

pp

Bsn.*1

pp

Bsn.*2

pp

Cbsn.

Hn.*1

 ppp

ppp

pp

ppp

  



 

 

 



 



 

f

Hn.*2

f

Hn.*3

f

Hn.*4

f

C*Tpt.*1

f

C*Tpt.*2

f

Tbn.*1

ppp

  

ppp

ppp

 

ppp

f

Timp.

                           ff

Pno.

ff

5

5



 



 

 







ppp



 ppp

f

Tba.

ppp

f

Tbn.*2

  

 

ppp

ppp





pp

pp

EE MSP

Vln.*Solo



    

Vln. 1 divisi





Vln. 2 divisi





  









































15





14

 





  

 





 













13

















12

 

7 etc.

6 etc.





 

A: 9

 

A: 9



8

 



7 etc.

   



 







  Vla. divisi



8 



 







11



10



 

 





7 etc.

Vcl. divisi





 







9







  

7 etc.

 

 







 

ord.

  

ppp

   

ord.

ppp

Db. divisi

ord.

 

ppp

(sul A)







ord.

ppp



  



8  





  





7





  

  

 

  

A: 9


40

FF

  Bsn.*1 181

ff

Bsn.*2

Cbsn.

Tbn.*1



Tbn.*2

Tba.

 

 

 

ppp

ff

ff

ppp

ppp



  ppp

ppp

ppp

Timp.

Pno.

  





6

5

                   

Vln.*Solo



 

A: 9

   

  

8







FF

ord.



 

pp

  

 

7 etc.

   Vln. 2 divisi

  



 Vla. divisi

 

 



  

 

  



 

A: 9



8

 



 

 

8

 

 





 



A: 9

  

7 etc.

  

 

8

7 etc.









A: 9



 



 

 

  

9

  

  

SP

                        



A: 10

 





 

 

mp

Vln. 1 divisi

    

  

  

  



8 etc.

7 etc.



 

8

  

 

5

  



  

 

 



  



  



 



 

7 etc.

 



  

  



 

 



ppp



ord.



pp

ord.

MSP

ff

pp

MSP

ff

Db. divisi

ord.

pp

MSP



A: 9

(half section)

Vcl.



pp

 

  

ord.

  

ff

 


41

GG

  187

Tbn.*1

f

Tbn.*2

Tba.

f

f



GG

HP

Vln.*Solo

  

 A: 11  



  

10

ASP





9 etc.

 

 



  

fff



Vln. 1 divisi



 

  



 





A: 12

  









11

  

  

  

 





10 etc.

 



  



  

  

 



10 etc.

mp

11

  

11

  

 



A: 12

 

  

 

FL SP A: 12

10 etc.



  

Vln. 2 divisi

 

 

  

 

 

 A: 11  



  

    

10





A: 12

 



9 etc.

  

11

 

  

 



10 etc.



  



 

 

 

 

Vla. divisi

8 

  

7 etc.





  



 





 

 

ppp

Vcl. divisi

 

ord.

 

ppp

 

ord.

 

ppp

(sul A)

 



ppp

ord.

ppp

mf

Db. divisi

  

A: 2



   3



4

etc.


42

  193

Tbn.*1

HH

 

ppp

Tbn.*2

Tba.

 

 

ppp





 

ppp

   

Vln.*Solo

 



 



 

 

A: 2

  

 



 

 

  



HH



ppp

Vln. 1 divisi

 



Vln. 2 divisi

 



  



  

 

  

 

 

  

 



  

  

 



 

 

 



  





 



 

 

 





 



  



  

Vla. divisi

 

 

        

   

  

pp

Db. divisi

A: 2



  

mf

3

  



4

etc.

  

       

 

  

p

199

Vln.*Solo

 





 p



 5





 



  ppp







 

ord.



ASP

  



Dougherty: Into Focus  
Advertisement