Page 1

TONE POEM: The Mind's Eye Inverted              Flute 1     

               

              

     

     

q=76

mf

Oboe

mf

Cor Anglais

Clarinet in Bb

         mf            mf

Bass Clarinet in Bb

 

Bassoon 1

 

Bassoon 2

  

  

             mf            

 

  

 

 

 

Trombone

 

Bass Trombone

 

 Tuba  

Trumpet in Bb 1

Trumpet in Bb 2

Timpani

   

mf

mf

  

q=76

Violin I

Violin II

Viola

Violoncello

Contrabass

 

 

 

 

  

mf

 

              mp             

 

mp

      

mp

       

f

   f       f

    

 

mp

      

              

      

        

Copyright © TONO/ASCAP 2013

 mp

 

         f

mp

f

mf

mp

mf



            f 



       



   

             mf         

f

    f   

 

           f            

f

 

       

f

f

 on stand    triangle  bass drum

f

  orch. cymbal onstand Percussion   ride cymbal on stand snare drum Bass Drum

f

      

 

Horn in F 2

f

  

 f

          

Horn in F 1

Ole Mathisen

 

f

mf

Flute 2

 

 

f

 

mp

 f

mp



f



divisi

divisi

  f

f

    

mp


2

 Fl. 1 

6

Fl. 2

Ob.

C. A.

Cl.

 mf

  mf



mf

  mf

 mf

B. Cl.

Bsn. 1

Bsn. 2

 

 



Tpt. 1

B. Tbn.

Tba.

B. D.

Vln. I

 

3

       

 

 

mf

mf

  



   

           

    

mf

  

    

                        

  

mf

  

mf

      

 

 

3

3

3

 mf

3

  3

 

       

     



mf



unis.

mf

 



mf

  

    

 Cb.  

    

 mf



       

        

       

        





f

f





 



     

  

     

  

  

mf

    

    

w/mallets

 

mf

 

f



 unis.

  



 

               



  

mf

              



   3     

mp

Vc.

mp

Vla.

 

mp

Vln. II

      

3

mf

  Timp.   Perc.

 

3

       

Tbn.

Tpt. 2

   

Hn. 2

    

mf

    Hn. 1    

     

3



    

mf

divisi

divisi

            

         

      divisi    

 

 

 

f

         

  

f

     

 f

    

   

unis.

f

           

                             

unis.

f

f

 

unis.

           f

f



   

  

 

f

   


 

11

Fl. 1

Fl. 2

Ob.

    

     

  

     

f

 

C. A.

f

Cl.

B. Cl.

       



          

 





Bsn. 2

    

   

   

   

     f 

f

     

   

Hn. 2

    



      f 

    



3

             

Bsn. 1

Hn. 1

f

        

        

   

   

     

     

   

     

     

 

 

      

Tpt. 1

Tpt. 2

Tbn.

B. Tbn.

 

Tba.

Timp.

Perc.

B. D.

Vln. I



 

to sticks

                

Vla.

Cb.

 

 





3  3               f  



3  3               f  

Vln. II

Vc.

  

3 3                  f

            

    

           

  

           

   

   

  

     

    

     

     

3

3

3

3

 3               3




4

 Fl. 1  15

Fl. 2

   

  

  

       







   

   

   

   

 ff

 

 ff

3                       3 3 3

C. A.



Ob.

    

Bsn. 1

Bsn. 2

B. Cl.



3   3  3   3                  

Hn. 1

   

Tpt. 2

Tbn.

       

ff

3

 3   B. Tbn.       3     Tba.         Timp.

Perc.

B. D.

 



  

 

Vla.

3

 

Vc.

 

  

 

     

         

         



 

   

 

       3

 

   

 

           5         

 

        

                          

   

  

  

    

ff

   

                 



            

 5  5          

   

7

ff

  ff



7



ff

3

5

5

  ff ff

7

5

         5



ff

 

            

5

5

  

                        7 7 ff                             

3

       

ff

7

3

5

 

 

3

Cb.

ff

ff

3 3  3                 

   

5        



3 3  3                  

f

5

                 

3 3  3                 

 

  



 

 



ff

    Vln. I  Vln. II

 

5

5

    

ff

Tpt. 1

ff

3

5

        

5

  3  3                            7

Hn. 2



5

5

3

 

 

ff

3   3  3   3                ff 

ff



 

ff

Cl.

ff

        

7

7

   7

       ff 7

    7

    7

   

     



  



          

7

7



   7

7

7


  19        Fl. 1  fff          Fl. 2  fff

      

Ob.

fff

       

C. A.

fff

      

Cl.

fff

      

B. Cl.

fff

      

Bsn. 1

fff

   Bsn. 2         Hn. 1      fff

fff

       fff       

Hn. 2

Tpt. 1

Timp.

Perc.

B. D.

   

 

      

 

fff

 

fff

fff

fff

fff

 fff

      

ff

 Vln. I 

Cb.

      





      

Vc.

      ff      

       

Vla.

7

      

      

  

Vln. II

3

3

ff

       fff    Tba.         fff 

 

   

 

    fff

ff

     ff  

 

fff

  

   

  

  

 

  

  

  

  

 

3

3

3

  

  

    

                mf

mf

                    mf   3           fff

 

 



 



 



3

3

          3  3

 3 3                  f  

 

f

  

 

fff

fff

    fff  

 

fff

    fff

 

fff

 

 

 

  3       

 

    fff

 

 

fff

 

fff

 

         

 

   fff

 

       3

 

   

 

  

 

fff

3

f

 

  3       

 

mf

3            3 f                

f

             

     f  3 3                f  3 3              f 3          3

   

               

    

3

   

     

mf

f

7

f

    

         3

ff

          3

   

          3

q = 60

f

           3

               

   

7

3

                     



fff

B. Tbn.

7

    

fff

Tbn.

3

ff

      

5

7 f                                3 3 7 7 f                               3 7 3 7 f                            3 3 7 7 f           7                 3 3 7          f    7                  3 3 7   f  7                        3 3

      

fff

Tpt. 2

                        

 

 

q = 60

fff

 

 

 

  

   3    f

 

 

 

   3   f

 

       

 

   

  f

  f

   3

    3



fff

fff

    fff

3


6

 Fl. 1  24

 

    

  

Cl.

B. Cl.

Bsn. 1

      

   

      

   

  

solo mp

   



3

3

f C. A.

   

3

f Ob.

       

f

Fl. 2

   

  

        

solo

        

mp Bsn. 2

Hn. 1

 

Hn. 2

Tpt. 1

Tpt. 2

Tbn.

Tba.

Timp.

Perc.

B. D.

Vln. I



       



   

 



  

Vln. II

 pp

pp

 

 gliss.    

 gliss.      

 gliss.    



 gliss.      

gliss.

pp



gliss.

     

Vc.

f

f

   

f

f

3

3

3

3

  f

 

  f

muted

15

                f

      

    

  pp

 

battuto

  

    

pp

 gliss.   



gliss.

 

 liss.

gliss.

 gliss.   



gliss.

 

 liss.

15

g

g

15

      battuto

      15

15



 

 

   

    

gliss.



f

   

  

f

Vla.

Cb.



B. Tbn.

 battuto            f

15


   29

Fl. 1

 

Fl. 2

  

7

  6                 

 

3         6            

 

 

3

3

3

3           6           3

Ob.

C. A.

 

Cl.

 

B. Cl.

  

Bsn. 1

Bsn. 2

Hn. 1

   

    



  

    



Hn. 2

7                                  5  mp

solo

3

 

 

 

 

Tpt. 1

 

Tpt. 2

 

Tbn.

 

B. Tbn.

 

 

 

 

 

 

 

 

unis.

 

unis.

 

Tba.

Timp.

Perc.

B. D.

Vln. I

15            





arco divisi

arco divisi

Vc.

ppp

 

Vla.

cymbal swipe

 

Vln. II

Cb.

         

   

         15

divisi

 

ppp

ppp

ppp

    ppp

     

arco

ppp

         

gliss. gliss.

gliss. gliss.

    

pp





 


8

  Fl. 1    34

 7

mf

Ob.

           mf 3

C. A.

         mf 3

          

            3

Fl. 2

7

         

 

7           

mf

 3

3

   

      

3

  

      

 

 

 

 

 Bsn. 2  

 

 

 

 

 

  

Timp.

Perc.

B. D.

   

Vln. II

  

mf

Vla.

Vc.

Cb.







 6

3

   6

       3

6

3



      

mf

7

      

 

 



 

   

   

  

   

  

   

mf







mf open

6

 

 

     

mf





            

               

6

6      

  

mf

       mf

 7                         

 

  

 3      3

   

6

mf

mf

 

 

6      

   

   



7

mf





 3     

 

mf





6

6

    



mf



6

  

      3

6

3

   



       

3

 

      

mf

3

   mf

    mf

3

     

 

   

mf

  

  Vln. I  

3

mf

Tba.

3

mf

  Hn. 1  

B. Tbn.

B. Cl.

Tbn.

Tpt. 2

      

Tpt. 1

   

 

Hn. 2

     

  

Cl.

Bsn. 1



            

 mf

       

  

   

  

   

  

   

3



 

    

 

6     

 

6     

3

3

6


   37

Fl. 1

Fl. 2

Ob.

C. A.

         

     

Cl.

    

      

          

                      6

Hn. 1

      

Tpt. 2

  

 Timp. 

B. D.



         ff            ff            

  

 

   

 

   

 

 

 ff

     

     

  

 

 

  

 

 

 

ff

             

         ff       

 

ff



 



 

ff

  

      

slight retard

 

  

 



      

   

             



      

   

        



      

 

6

3 3

  

        ff       

                                          

 

   

ff



3

3

3

   

3

ff

ff

           ff          

ff

ff



          

q = 60

          

            ff

  

                          

            

 

3 3

      

 ff

      

 

   

ff

       

   

ff

 

6

Cb.

      3

6

Vc.

ff

 Vln. I  

Vla.

     3        

3

            

ff



Vln. II



3



 

             3 ff                       3



3



    

B. Tbn.

ff

3

                  

Tbn.

Perc.

   



3

     

Tpt. 1

Tba.

        

Hn. 2

      

           

6

Bsn. 2

  

 

9

ff

         

6

Bsn. 1

               

       

B. Cl.

slight retard

      

              q = 60


10

 Fl. 1  40

Fl. 2

       

f

      

f

        

Ob.

C. A.

                            

     

                          

f

                          

f

                         



          



       

 



    

 

          

Cl.

B. Cl.



Bsn. 1

Bsn. 2

Hn. 1

     

Hn. 2

     

Tpt. 1

Tpt. 2

Tbn.

    

    





 

B. Tbn.

 

        Timp.    Tba.

Perc.

B. D.

Vln. I



  

 f

 

Vln. II

 f

 

Vla.

 f

 

Vc.

 f

Cb.

 

f



       

  

      

      

  

      

 

      

 

      

 

    

f

f

   

   

 

    

         

      



   

      

      

   

                  



   

      

       

  

    

       

     

 

     


  43               Fl. 1  ff

Fl. 2

Ob.

C. A.

Cl.

f

B. Cl.

f

               

  

               ff

               

   f

 Hn. 1   Hn. 2

 

Tpt. 1

   

Tpt. 2

B. Tbn.

Timp.

Perc.

B. D.

 

 

Vln. II

 

Vla.

 

Vc.

  

        

             

  

ff

ff

f

     ff

       f ff     

f

ff

     

f

ff

      ff

ff    

       

 

      

  

        

  

  

             

f

 Vln. I  

Cb.

ff

 

Tbn.

Tba.

              ff

f

Bsn. 2

             ff

 

Bsn. 1

ff

  



ff  

 ff     ff

  

ff

  

     ff



ff

     

     

ff

 

                                  

ff

 

 

   

    

 

   

 

ff

    

                              

   

 

        

   

 

  

 

              

11

 

q = 76 (a tempo)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q = 76 (a tempo)

                                              mp                               mp                                              mp              unis.        divisi                       

          

    

     

                                           

                          

   

      

 

mp

  

 

  

  

mp

  

    

 

    

    


12

 

 

  

 

  

 

  

 

  

 

  

 

  





48

Fl. 1

Fl. 2

Ob.

C. A.

Cl.

B. Cl.

Bsn. 1

Bsn. 2

 Hn. 1 

          mf

         mf

  

mf

Hn. 2

 

Tpt. 1

Tpt. 2

Tbn.

B. Tbn.

    

mf

mf

mf

mf

mf

mf

 

  

 

 

 

  

        

  

 

   

 

                            

      

 

 

 

 

 

      

 

 

 

 

 

 

 

                     

 

 

 

 

 

 

 

       

 

                            

mf

Tba.

Timp.

Perc.

B. D.

Vln. I

mf



    

Vln. II





  



 

 

Vc.

      

 



                 

    

                               

Vla.

Cb.

            

  

 

   

       

mf

       

mf



  

      

     

     mf

 

    

  

 


   53

Fl. 1

 

       



  

13

Fl. 2

Ob.

   

C. A.

   

Cl.

   

    

 

     

B. Cl.

   

Bsn. 1

              

Bsn. 2

Hn. 1

  

                  

Hn. 2

Tpt. 1

     

 



    

 

   

  

  

  

       

  

      



  

       

   

    



    

3

3

               

  

Tbn.

Timp.

Perc.

B. D.

Vln. I

Vla.

Vc.

Cb.

    



   

     

mf

 



   



  

   

 

 

 

   

3 3          

mf

3        

 

    



    

        



 

     

   

     

  



   

 

   



  

 

  

 

 

 

        

  

 



   

    







 

  

  

  

 

3

mf

   

   

      

3    

f

mf

 

  

3

         3

 

 

   

     

  

   



mf

mf

Vln. II

 

     

 

B. Tbn.

Tba.

3

mf Tpt. 2

3

     

 

     

    

3

   


14

  



  

    

q = 76 (a tempo)

 Fl. 1 

Ob.

C. A.

Cl.

 

               

57

Fl. 2

B. Cl.

Bsn. 1

f



f

Bsn. 2

Hn. 1



f

Tpt. 1



f

   

    

    

    

f

       3

3

   

         3

        

  

f

     

                             

f

  

                            

         

Hn. 2

slight retard

 

     

3

   





   

f

Tpt. 2



f

        

Tbn.

    

f

 

B. Tbn.

Tba.

Timp.

Perc.

 

 f

 



      

 

    

  

f

Cb.

f

Vc.

f

 

 

Vla.

f

Vln. II

    

 

 B. D.    Vln. I





 

  

       



                     

7

to triangle      

f

q = 76 (a tempo)

slight retard

 

    

  

     7

7

 f



7

     

 

 

 

 

      7

7           


  62

Fl. 1

Fl. 2

             

 

   

   

    

3

    

3

 



     



     

15

 

3

 

3

   

   

Ob.

C. A.

Cl.

   

f

Bsn. 1

Bsn. 2

B. Cl.

 Hn. 1  Hn. 2

Tpt. 1

    

f

      



   









   

 

3

3

  

   

   

   

3



   

 

  

3

Tbn.

B. Tbn.

 

Tba.

Timp.

Perc.

B. D.

 

 Vln. I 

 

7

  

7

7

 

7

  f

Vln. II



f

 

Vla.

unis. divisi               7

7

 7    unis.              divisi   

Vc.

7

Cb.

 



 

  

      7

   

 

7

 

   

  

 

 

7  



7    



    

 

 

7

  

7

  

    

Tpt. 2

   

 

3 3  3 3                                                            3                                          3  3 3

 

 





7

     7

 





7

 





7



  

   


16

  Fl. 1  67

Fl. 2





 

ff

ff

                  ff                    

B. Cl.

Bsn. 1

     

 





 

   

 



   



    

    

 

 



   



  

   



  

  

ff

 



 



 

 

 

  

 

 

Tbn.

B. Tbn.

Tba.

Timp.

Perc.

B. D.

Vln. I

Vln. II

Vla.

Vc.

Cb.

   

 

ff

ff

 

 

  

7



divisi

  



7

 

    

divisi



  

 

  

 

 



 

  



  



  

 

 

   

     



    



 

 

 

 

  

 

 

 

 

 



 

   

 

 

ff

divisi

 



unis.

 

ff

  





unis.

7

  

ff



ff

 

 



  



 

 

 

  

 

  

 



 ff

  

 



 



  

 

   

 



   



   





  

   

 

   



  



   

play snare w/brush

 

 



ff

unis.

   

 

 



unis.

 

  

   



    

 

  



   

 

    

   

ff

ff

7

 

divisi

 

  

7

    

 

ff to bass drum

ff

 

    

 

 

ff

 

 

ff

 



  

  

 

Tpt. 2

 

   

Tpt. 1

  

 Hn. 1  Hn. 2



 

   

                                                                       ff                                             

Cl.

Bsn. 2



C. A.

 

ff

Ob.



   



   

  

 


   71

Fl. 1

  

   

Fl. 2

Ob.

  

 

 

B. Cl.

Bsn. 1

3

Hn. 1

 

 

 

 

 

 

  

 

3

Hn. 2

 

3

 

3

 

 

Tbn.

    

 

 

Vln. I

  



 

 

    

 

Vc.



    

     

 

    

 

          



            

                           

 

  

 

ff



 





  



     

  











  

   



  

      

     



  

  

           







    

 





      

     



  



  

     

  

 



 





 

 

        

 









   



  

 

    



  

Vla.



  

 

 

     

 

Vln. II

Cb.

 



B. Tbn.

B. D.

    

Tpt. 2

Perc.

    

17

                                                  

 

Tpt. 1

Timp.



 

             

    

Tba.

3 3  3   3                                      3             3 3 3                              

Cl.

Bsn. 2

 

 

     

C. A.

 

 

 











  


18

               

              

              

            

75

Fl. 1

mf

Fl. 2

mf

Ob.

mf

C. A.

mf

Cl.

               mf

B. Cl.

Bsn. 1

Bsn. 2

Hn. 1

Tpt. 1

Tbn.

B. Tbn.

Perc.

B. D.

Vln. I

 

 

ff

 

 

 

  

 

 

  

 

Vln. II

Vla.

ff

ff

ff

ff

 

  

ff

ff

ff

ff

ff

ff

                  mf

                                   

    

 

    

f

 

      

  

f

    f 

    f

     f

 

    

  

ff

            

Cb.

 

 

  3

ff

ff

 

             mf

  

fz

      fz

     

  

     

  

mf

          

mf

fz

 

fz

              f pp w/mallets

         

mf

          mf

  

 

pp

 

divisi

divisi

     f

 

  

 f

f

divisi

  

  mf

       

       

unis.

     

unis.

unis.



mf

Vc.

 

fz

f

 

fz

f

  



           

 

      



ff

 

3                     mf

  

ff

         mf     

3

 

ff

 

 

Tpt. 2

Timp.

  

Hn. 2

Tba.

 

3

  

       

             f 

f

 

  f              

  f


 

  

     

   

  

     

80

Fl. 1

Fl. 2

Ob.

C. A.

f

 f

      

 

        

         

f

f

 

              



 

   



 

   

   f 

     

 

   f 

   

     





     

 

 

  

     

 

f

   

f

Tpt. 2

               

f

Tpt. 1

 

     

 Bsn. 2  

Hn. 2



Hn. 1

 

     

    

19



 

Bsn. 1

f

f



B. Cl.

      

f

Cl.

     

               

 

Tbn.

B. Tbn.

 

  

  

               

  

Tba.

Timp.

Perc.

    

      f

B. D.

Vln. I



   

Vln. II

Vla.

 

Vc.

Cb.

   f

 

  f

 



 

 







  

to sticks

                

   

  


20

           84    Fl. 1  

Fl. 2

       



         

                   

        

Bsn. 1

Bsn. 2

Ob.

C. A.



   

   

   

   



3               3 3



 3

Cl.

B. Cl.

 

 Hn. 1 

Hn. 2

    B. Tbn.           f 3 3       Tba.       f     Timp.  3

B. D.

Vln. I

   

       

 

 3           3         

  

       

3

     

Vc.

 

3       3

 3               3

3



  

  

  

        



   

 

3

          3

 









 



     

       



 

     

 

  

 

  

 

  

ff

ff

ff

 

 



ff

 



  

ff

  ff

 

7

   

ff

mp





  

f

        

 



3 3  3                  3 3 3                 

 

 

  

ff

3 3  3                  

       

3            

Vla.



  

 

           

Vln. II

Cb.

3





            3

 

ff

ff

3 3               f

Tbn.

Perc.

ff

 

  3  3                           7 3

          

Tpt. 2



ff

  

                  7

7

                             

             

7

3

3

3

7

ff

ff

  ff

7



 

3

          

Tpt. 1



ff

ff



ff

3   3  3   3                 ff 3   3  3   3                  



ff

ff




Fl. 1

 88            ff

 

Fl. 2

ff

5

5

5

        

        5

     

C. A.

Cl.

B. Cl.

5

    

5

        

     

Tbn.

B. Tbn.

       

       

 Timp.  Perc.

5

       

Tpt. 2

ff

Vc.

       fff

     

fff

           



fff

 



7

  

 5       

        ff         

7                          3 7 3

     

     

     

     

fff

     

fff

     

 

 

fff

 

                7

   

3

3

fff              3

7

3

fff                  7

3

7

   Cb.    7

7

3

fff

3

fff

  

ff

    

ff

f

        3

3

3         3      3

3

  

           3 f                

     

 3               3  f

     

ff

ff

ff

     

   

  

ff

3

    

 

  

  

  

 

  

    

     

3

 3 3                     f        

  

3

f

     

3

       

      

f

      f         f       

   

                        fff

ff

     

f

      

      

7

7

3

     

     fff    

 3 7 7 f                               3 3 7 7 f                             3 7 3 7 f                            3 3 7 7 f            7               3 3 7  f                         7      6 7 f   7                       3

       fff  

21

3

     

fff



                         

     

fff

7

Vla.

fff



7

Vln. II

      



7

    

     

                

5       B. D.   

Vln. I

     

fff

5

               

Tpt. 1

  

        

Hn. 2



5

        

fff

        

fff

5

5

      

fff



  

5

 Hn. 1 

Tba.

    

Bsn. 1

Bsn. 2

5

  

5

           fff

fff

5

Ob.

5

          

f

  

         3

        f

3

3         f

3      f    

     

f

3

f

3

 



Mathisen: The Minds Eye Inverted