Quest 10 (2)

Page 10

The team Jean Windvogel (AC), Lesley van Heerden (AC, Biology), Dr Richard Dean (WCRO), Ken Auerswald (Labserve), Willem Zietsman (AC), Rebekah Swanepoel (AC), Dr Sue Milton (WCRO), André Goosen (AC, Natural Sciences). Image: Albert College Photography: Rebekah Swanepoel

Dr Judie Maguire (WCRO). Image: Albert College

managing water before it becomes part of the effluent. n There are more than 60 guest houses and a hotel in Prince Albert, essential for the socioeconomic development of the region, but part of the reason for the growing numbers of people in the community, all of whom need to be aware of the problems of sewage disposal in a small, rural town. People who run the guest

References Labserve Analytical Sevices. Test report# 14-01238: Soil Analysis Prince Albert Municipality 2014. Draft Revisions to the Integrated Development Plan (IDP) for 2012-2017 (p33-35) http://www.lenntech.com/periodic/water/calcium/calcium-andwater.htm#ixzz31yLYe9ps Shearing, D and Van Heerden, K. Karoo Southern African Wild Flower Guide 6. 1994. Botanical Society of South Africa, Cape Town. South Africa. Van Breda, PAB and Barnard, SA. Veld Plants of the Winter Rainfall Region. Department of Agricultural Development. 1991. Pretoria

Dr Zola Urgessa, a post-doctoral physics student at Nelson Mandela Metropolitan University, conducts research using the university’s new scanning probe microscope. Image: NMMU

Nelson Mandela Metropolitan University’s Prof. JR Botha inspects the university’s R7.5 million scanning probe microscope, which will be used for a broad range of research, including work on cancer and diabetes.

atom – but it is also allowing researchers from NMMU and other institutions throughout the Eastern Cape to probe solids, polymers (plastics and resins) and biological material for their structural, electrical and mechanical properties. ‘It is the fastest instrument available on the market today, with the ability to obtain high resolution morphological (structural) images on a time scale of one second, which will have a tremendous impact on NMMU’s research on dynamic processes in cancer and insulin resistant cells,’ said professor of physics JR Botha, who holds a research chair in nanophotonics. It will be used to study a diverse range of material, including advanced semiconductors being developed at NMMU, Walter Sisulu University and Fort Hare University, as well as fibers and polymers in bio-composites being studied

Image: NMMU

❚❚❚❙❙❙❘❘❘

News

houses and hotels and their visitors need to understand the problem, which will require a campaign, publicising the results of this study and helping them to reduce the damage to the environment by: n Reducing the volume of water used for bathing and laundry n Using biodegradable detergents to improve the quality of the waste water. Q

Futuristic instruments for NMMU Imagine being able to place a threedimensional cancer cell specimen under a powerful microscope that has a tiny probe to stimulate the specimen from all angles, providing scientists with a clearer perspective of its properties. It sounds futuristic, but it is happening right now in Nelson Mandela Metropolitan University’s (NMMU) physics department, which recently received a state-of-the-art scanning probe microscope valued at R7.5 million. It is one of two new leadingedge instruments the university has acquired though the National Research Foundation’s competitive National Equipment Programme (NEP) and National Nanotechnology Equipment Programme (NNEP) – which awards two-thirds funding to enable South African universities to buy world-class research equipment. The second instrument, worth R5.4 million, is a three-dimensional optical profiler, which will broaden the scope of NMMU’s research in the area of optical component manufacturing (e.g. pertaining to mirrors and lenses) in the aerospace and automotive industry. The scanning probe microscope not only enables research on the nano scale – which is almost down to the miniscule level of the

8

10| 2 2014

t the Centre for Scientific and Industrial Research (CSIR). NMMU will also use it for battery electrode research. The second instrument, the threedimensional optical profiler, is the latest addition to NMMU’s Ultra-High Precision Manufacturing Centre, which produces advanced optical components usually found in applications in the aerospace and automotive industries. ‘The new instrument has been designed to address the increasing demand by the optics industry to characterise the profiles and surfaces of freeform and complex optical components, such as aspheric (deviating slightly from a perfectly spherical shape) and diffractive (enabling the bending of light) mirrors and lenses,’ said manufacturing engineering expert Prof. Khaled Abou-El Hossein.


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.