Page 1

SEBM033805

MACHINE MODEL

SERIAL NUMBER

WA150-5

65001 and up

This shop manual may contain attachments and optional equipment that are not available in your area. Please consult your local Komatsu distributor for those items you may require. Materials and specifications are subject to change without notice.

WA150-5 mounts the SAA4D102E-2 engine. For details of the engine, see the 102 Series Engine Shop Manual.

© 2005 All Rights Reserved Printed in Japan 04-05(02)

00-1 (5)


CONTENTS No. of page

01

GENERAL ................................................................................................................01-1

10

STRUCTURE, FUNCTION AND MAINTENANCE STANDARD......................................................................10-1

20

TESTING AND ADJUSTING .......................................................................20-1

30

DISASSEMBLY AND ASSEMBLY ..........................................................30-1

90

OTHERS ....................................................................................................................90-1

00-2 (2)

WA150-5


The affected pages are indicated by the use of the following marks. It is requested that necessary actions be taken to these pages according to the table below.

Mark

Indication

Action required

Q

Page to be newly added

Add

q

Page to be replaced

Replace

( )

Page to be deleted

Discard

Pages having no marks are those previously revised or made aditions.

LIST OF REVISED PAGES Mark

Page

q 00-1 q q q q q q q q q q q q q q q q q q q q q q q q

00-2 00-2-1 00-2-2 00-2-3 00-2-4 00-3 00-4 00-5 00-6 00-7 00-8 00-9 00-10 00-11 00-12 00-13 00-14 00-15 00-16 00-17 00-18 00-19 00-20 00-21 00-22

01-1 01-2 01-3 q 01-4 01-5 01-6 01-7 q 01-8 q 01-9 ( 01-10) 10-1 10-2 10-3 WA150-5

Revision Mark number

(5) (2) (5) (5) (5) (5)

(5)

(5) (5)

Page

10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 10-15 10-16 10-17 q 10-18 q 10-19 10-20 10-21 10-22 10-23 10-24 10-25 10-26 10-27 10-28 10-29 10-30 10-31 10-32 10-33 10-34 10-35 10-36 10-37 10-38 10-39 10-40 10-41 10-42 10-43 10-44

Revision Mark number

(5) (5)

Page

10-45 10-46 10-47 10-48 10-49 10-50 10-51 10-52 10-53 10-54 10-55 10-56 10-57 10-58 10-59 10-60 10-61 10-62 10-63 10-64 10-65 10-66 10-67 10-68 10-69 10-70 10-71 10-72 10-73 10-74 10-75 10-76 10-77 10-78 10-79 10-80 10-81 10-82 10-83 10-84 10-85

Revision Mark number

(3)

(3)

(3)

Page

10-86 10-88 10-89 10-90 10-91 10-92 10-94 10-95 10-96 10-97 10-98 10-100 10-101 10-102 10-103 10-104 10-105 10-106 10-107 10-108 10-109 10-110 10-111 10-112 10-113 10-114 10-115 10-116 10-117 10-118 10-119 10-120 10-121 10-122 10-123 10-124 10-125 10-126 10-127 10-128 10-130

Revision Mark number

Page

10-131 q 10-132 10-133 10-134 10-135 10-136 10-137 10-138 10-139 10-140 10-141 10-142 10-144 10-145 10-146 10-147 10-148 10-149 10-150 10-151 10-152 10-153 10-154 10-155 10-156 10-157 10-158 10-159 10-160 10-161 10-162 10-163 10-164 10-165 10-166 10-167 10-168 10-169 10-170 10-171 10-172

Revision number

(5)

(4) (3)

(3)

(4)

(3)

00-2-1 (5)


Mark

Page

10-173 10-174 10-175 10-176 10-177 10-178 10-179 10-180 10-181 10-182 10-183 10-184 10-185 10-186 10-187 10-188 10-189 10-190 10-191 10-192 10-193 10-194 10-195 10-196 20-1 20-2 20-3 20-4 20-5 20-6 20-7 20-101 20-102 20-103 20-104 20-105 20-106 20-107 20-108 20-109 20-110 20-111 20-112 20-113 20-114 20-115 20-116 20-117 20-118

00-2-2 (5)

Revision Mark number

(3)

(1) (1) (1) (1) (1) (1) (1) (1) (4) (4) (4) (1) (4) (1) (1) (4) (4) (1) (1) (1) (1) (1) (1) (1) (4)

Page

20-119 20-120 20-121 20-122 20-123 20-124 20-125 20-126 20-127 20-128 20-129 20-130 20-131 20-132 20-133 20-134 20-135 20-136 20-137 20-138 20-139 20-140 20-141 20-142 20-143 20-144 20-145 20-146 20-147 20-148 20-149 20-150 20-151 20-152 20-153 20-154 20-155 20-156 20-157 20-158 20-159 20-160 20-161 20-162 20-163 20-164 20-165 20-166 20-167 20-168

Revision Mark number

(1) (1) (1) (1) (4) (1) (1) (4) (1) (1) (4) (1) (1) (1) (4) (1) (1) (1) (1) (1) (1) (1) (4) (4) (1) (1) (1) (1) (1) (1) (3) (1) (4) (1) (1) (1) (4) (1) (1) (1) (4) (4) (1) (4) (4) (1) (4) (4) (4) (4)

Page

20-169 20-170 20-171 20-201 20-202 20-203 20-204 20-205 20-206 20-207 20-208 20-209 20-210 20-211 20-212 20-213 20-214 20-215 20-216 20-218 20-219 20-220 20-221 20-222 20-223 20-224 20-225 20-226 20-227 20-228 20-229 20-230 20-231 20-232 20-233 20-234 20-235 20-236 20-237 20-238 20-238-1 20-239 20-240 20-241 20-243 20-244 20-245 20-246 20-247 20-248

Revision Mark number

(4) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (4) (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (4) (1) (1) (4) (1) (1) (1) (1) (1) (1)

Page

20-249 20-250 20-251 20-252 20-253 20-254 20-301 20-302 20-303 20-304 20-305 20-306 20-307 20-308 20-309 20-310 20-311 20-312 20-313 20-314 20-315 20-316 20-317 20-318 20-319 20-320 20-321 20-322 20-323 20-324 20-325 20-326 20-327 20-328 20-329 20-330 20-401 20-402 20-403 20-404 20-405 20-406 20-407 20-501 20-502 20-503 20-504 20-505 20-506 20-507

Revision Mark number

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (4) (4) (1) (1) (1) (4) (1) (1) (1) (1) (1) (1) (1)

Page

20-508 20-509 20-510 20-511 20-512 20-513 20-514 20-515 20-516 20-517 20-518 20-519 20-520 20-522 20-523 20-524 20-526 20-527 20-528 20-529 20-530 20-531 20-532 20-533 20-534 20-535 20-536 20-537 20-538 20-539 20-540 20-542 20-543 20-544 20-545 20-546 20-547 20-548 20-549 20-550 20-551 20-552 20-553 20-554 20-555 20-556 20-557 20-558 20-559 20-560

Revision number

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (4) (1) (1) (1) (1) (1) (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) WA150-5


Mark

Page

20-601 20-602 20-603 20-604 20-606 20-607 20-608 20-610 20-611 20-612 20-613 20-614 20-615 20-616 20-617 20-618 20-619 20-620 20-621 20-622 20-623 20-624 20-625 20-626 20-627 20-628 20-629 20-630 20-631 20-632 20-633 20-634 20-635 20-636 20-637 20-638 20-639 20-640 20-641 20-642 20-643 20-644 20-645 20-646 20-647 20-648 20-649 20-650 20-651 20-652 WA150-5

Revision Mark number

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

Page

20-653 20-654 20-655 20-656 20-657 20-658 20-659 20-660 20-661 20-662 20-663 20-664 20-665 20-666 20-667 20-668 20-669 20-670 20-671 20-672 20-673 20-674 20-675 20-676 20-677 20-678 20-679 20-680 20-701 20-702 20-703 20-704 20-705 20-706 20-707 20-708 20-709 20-710 20-711 20-712 20-713 20-714 20-715 20-716 20-717 20-718 20-719 20-720 20-721 20-722

Revision Mark number

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

Page

Revision Mark number

20-723 20-724 20-801 20-802 20-803 20-804 20-805 20-806 20-807 20-808 20-809 20-810 20-811 20-812 20-813 20-814 20-815 20-816 20-817 20-818 20-819 20-820 20-821 20-822 20-823 20-824

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

30-1 30-2 30-3 30-4 30-5 30-6 30-7 30-8 30-9 30-10 30-11 30-12 30-13 30-14 30-15 30-16 30-17 30-18 30-19 30-20 30-21 30-22

(4) (2) (2) (2) (2) (2) (4) (4) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)

Page

30-23 30-24 30-25 30-26 30-27 30-28 30-29 30-30 30-31 30-32 30-33 30-34 30-35 30-36 30-37 30-38 30-39 30-40 30-41 30-42 30-43 30-44 30-45 30-46 30-47 30-48 30-49 30-50 30-51 30-52 30-53 30-54 30-55 30-56 30-57 30-58 30-59 30-60 30-61 30-62 30-63 30-64 30-65 30-66 30-67 30-68 30-69 30-70 30-71 30-72

Revision Mark number

(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)

Page

30-73 30-74 30-75 30-76 30-77 30-78 30-79 30-80 30-81 30-82 30-83 30-84 30-85 30-86 30-87 30-88 30-89 30-90 30-91 30-92 30-93 30-94 30-95 30-96 30-97 30-98 30-99 30-100 30-101 30-102 30-103 30-104 30-105 30-106 30-107 30-108 30-109 30-110 30-111 30-112 30-113 30-114 30-115 30-116 30-117 30-118 30-119 30-120 30-121 30-122

Revision number

(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (4) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)

00-2-3 (5)


Mark

Page

30-123 30-124 30-125 30-126 30-127 30-128 30-129 30-130 30-131 30-132 30-133 30-134 30-135 30-136 30-137 30-138 30-139 30-140 30-141 30-142 30-143 30-144 30-145 30-146 30-147 30-148 30-149 30-150 30-151 30-152 30-153 30-154 30-155 30-156 30-157 30-158 30-159 30-160

90-1 90-3 90-5 90-7 90-9 90-11 90-13 90-15 90-17 90-19

00-2-4 (5)

Revision Mark number

(2) (2) (2) (2) (2) (2) (2) (2) (2) (4) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (4) (2) (4) (2) (2) (2) (4)

Page

Revision Mark number

Page

Revision Mark number

Page

Revision Mark number

Page

Revision number

90-21 90-23 90-25 90-27 90-29 90-31

(4)

WA150-5


SAFETY

SAFETY NOTICE

SAFETY SAFETY NOTICE IMPORTANT SAFETY NOTICE Proper service and repair is extremely important for safe machine operation. The service and repair techniques recommended by Komatsu and described in this manual are both effective and safe. Some of these techniques require the use of tools specially designed by Komatsu for the specific purpose. To prevent injury to workers, the symbol k is used to mark safety precautions in this manual. The cautions accompanying these symbols should always be followed carefully. If any dangerous situation arises or may possibly arise, first consider safety, and take the necessary actions to deal with the situation.

GENERAL PRECAUTIONS Mistakes in operation are extremely dangerous. Read the Operation and Maintenance Manual carefully BEFORE operating the machine. 1. Before carrying out any greasing or repairs, read all the precautions given on the decals which are fixed to the machine. 2. When carrying out any operation, always wear safety shoes and helmet. Do not wear loose work clothes, or clothes with buttons missing. • •

Always wear safety glasses when hitting parts with a hammer. Always wear safety glasses when grinding parts with a grinder, etc.

3. If welding repairs are needed, always have a trained, experienced welder carry out the work. When carrying out welding work, always wear welding gloves, apron, hand shield, cap and other clothes suited for welding work. 4. When carrying out any operation with two or more workers, always agree on the operating procedure before starting. Always inform your fellow workers before starting any step of the operation. Before starting work, hang UNDER REPAIR signs on the controls in the operator's compartment. 5. Keep all tools in good condition and learn the correct way to use them.

6. Decide a place in the repair workshop to keep tools and removed parts. Always keep the tools and parts in their correct places. Always keep the work area clean and make sure that there is no dirt or oil on the floor. Smoke only in the areas provided for smoking. Never smoke while working. PREPARATIONS FOR WORK 7. Before adding oil or making any repairs, park the machine on hard, level ground, and block the wheels or tracks to prevent the machine from moving. 8. Before starting work, lower blade, ripper, bucket or any other work equipment to the ground. If this is not possible, insert the safety pin or use blocks to prevent the work equipment from falling. In addition, be sure to lock all the control levers and hang warning signs on them. 9. When disassembling or assembling, support the machine with blocks, jacks or stands before starting work. 10.Remove all mud and oil from the steps or other places used to get on and off the machine. Always use the handrails, ladders or steps when getting on or off the machine. Never jump on or off the machine. If it is impossible to use the handrails, ladders or steps, use a stand to provide safe footing.

00-3


SAFETY

PRECAUTIONS DURING WORK 11. When removing the oil filler cap, drain plug or hydraulic pressure measuring plugs, loosen them slowly to prevent the oil from spurting out. Before disconnecting or removing components of the oil, water or air circuits, first remove the pressure completely from the circuit. 12.The water and oil in the circuits are hot when the engine is stopped, so be careful not to get burned. Wait for the oil and water to cool before carrying out any work on the oil or water circuits. 13.Before starting work, remove the leads from the battery. Always remove the lead from the negative (–) terminal first. 14.When raising heavy components, use a hoist or crane. Check that the wire rope, chains and hooks are free from damage. Always use lifting equipment which has ample capacity. Install the lifting equipment at the correct places. Use a hoist or crane and operate slowly to prevent the component from hitting any other part. Do not work with any part still raised by the hoist or crane. 15.When removing covers which are under internal pressure or under pressure from a spring, always leave two bolts in position on opposite sides. Slowly release the pressure, then slowly loosen the bolts to remove. 16.When removing components, be careful not to break or damage the wiring. Damaged wiring may cause electrical fires. 17.When removing piping, stop the fuel or oil from spilling out. If any fuel or oil drips onto the floor, wipe it up immediately. Fuel or oil on the floor can cause you to slip, or can even start fires. 18.As a general rule, do not use gasoline to wash parts. In particular, use only the minimum of gasoline when washing electrical parts.

00-4

SAFETY NOTICE

19.Be sure to assemble all parts again in their original places. Replace any damaged parts with new parts. • When installing hoses and wires, be sure that they will not be damaged by contact with other parts when the machine is being operated. 20.When installing high pressure hoses, make sure that they are not twisted. Damaged tubes are dangerous, so be extremely careful when installing tubes for high pressure circuits. Also, check that connecting parts are correctly installed. 21.When assembling or installing parts, always use the specified tightening torques. When installing protective parts such as guards, or parts which vibrate violently or rotate at high speed, be particularly careful to check that they are installed correctly. 22.When aligning two holes, never insert your fingers or hand. Be careful not to get your fingers caught in a hole. 23.When measuring hydraulic pressure, check that the measuring tool is correctly assembled before taking any measurements. 24.Take care when removing or installing the tracks of track-type machines. When removing the track, the track separates suddenly, so never let anyone stand at either end of the track.


FOREWORD

GENERAL

FOREWORD GENERAL This shop manual has been prepared as an aid to improve the quality of repairs by giving the serviceman an accurate understanding of the product and by showing him the correct way to perform repairs and make judgements. Make sure you understand the contents of this manual and use it to full effect at every opportunity.

This shop manual mainly contains the necessary technical information for operations performed in a service workshop. For ease of understanding, the manual is divided into the following chapters; these chapters are further divided into the each main group of components.

STRUCTURE AND FUNCTION This section explains the structure and function of each component. It serves not only to give an understanding of the structure, but also serves as reference material for troubleshooting. In addition, this section may contain hydraulic circuit diagrams, electric circuit diagrams, and maintenance standards. TESTING AND ADJUSTING This section explains checks to be made before and after performing repairs, as well as adjustments to be made at completion of the checks and repairs. Troubleshooting charts correlating "Problems" with "Causes" are also included in this section. DISASSEMBLY AND ASSEMBLY This section explains the procedures for removing, installing, disassembling and assembling each component, as well as precautions for them. MAINTENANCE STANDARD This section gives the judgment standards for inspection of disassembled parts. The contents of this section may be described in STRUCTURE AND FUNCTION. OTHERS This section mainly gives hydraulic circuit diagrams and electric circuit diagrams. In addition, this section may give the specifications of attachments and options together.

NOTICE The specifications contained in this shop manual are subject to change at any time and without any advance notice. Use the specifications given in the book with the latest date.

00-5


FOREWORD

HOW TO READ THE SHOP MANUAL

HOW TO READ THE SHOP MANUAL

REVISED EDITION MARK

VOLUMES Shop manuals are issued as a guide to carrying out repairs. They are divided as follows:

When a manual is revised, an edition mark ((1)(2)(3)....) is recorded on the bottom of the pages.

Chassis volume: Issued for every machine model Engine volume: Issued for each engine series Each issued as one Electrical volume: Attachments volume: ¡ volume to cover all models

REVISIONS

}

These various volumes are designed to avoid duplicating the same information. Therefore, to deal with all repairs for any model , it is necessary that chassis, engine, electrical and attachment volumes be available. DISTRIBUTION AND UPDATING Any additions, amendments or other changes will be sent to KOMATSU distributors. Get the most up-todate information before you start any work.

FILING METHOD 1. See the page number on the bottom of the page. File the pages in correct order. 2. Following examples show how to read the page number. Example 1 (Chassis volume): 10 - 3 Item number (10. Structure and Function) Consecutive page number for each item. Example 2 (Engine volume): 12 - 5 Unit number (1. Engine) Item number (2. Testing and Adjusting) Consecutive page number for each item. 3. Additional pages: Additional pages are indicated by a hyphen (-) and number after the page number. File as in the example. Example: 12-203 10-4 12-203-1 10-4-1 Added pages 12-203-2 10-4-2 12-204 10-5

00-6

Revised pages are shown in the LIST OF REVISED PAGES next to the CONTENTS page.

SYMBOLS So that the shop manual can be of ample practical use, important safety and quality portions are marked with the following symbols.

Symbol

Item

Remarks

k

Safety

Special safety precautions are necessary when performing the work.

Caution

Special technical precautions or other precautions for preserving standards are necessary when performing the work.

Weight

Weight of parts of systems. Caution necessary when selecting hoisting wire, or when working posture is important, etc.

Tightening torque

Places that require special attention for the tightening torque during assembly.

Coat

Places to be coated with adhesives and lubricants, etc.

5

Oil, water

Places where oil, water or fuel must be added, and the capacity.

6

Drain

Places where oil or water m u s t b e d r a i n ed , a n d quantity to be drained.

a

4

3 2


FOREWORD

HOISTING INSTRUCTIONS

HOISTING INSTRUCTIONS HOISTING k Heavy parts (25 kg or more) must be lifted with a hoist, etc. In the DISASSEMBLY AND ASSEMBLY section, every part weighing 25 kg or more is indicated clearly with the symbol 4 •

If a part cannot be smoothly removed from the machine by hoisting, the following checks should be made: 1) Check for removal of all bolts fastening the part to the relative parts. 2) Check for existence of another part causing interference with the part to be removed.

WIRE ROPES 1) Use adequate ropes depending on the weight of parts to be hoisted, referring to the table below: Wire ropes (Standard "Z" or "S" twist ropes without galvanizing) Rope diameter

Allowable load

mm

kN

tons

10 11.5 12.5 14 16 18 20 22.4 30 40 50 60

9.8 13.7 15.7 21.6 27.5 35.3 43.1 54.9 98.1 176.5 274.6 392.2

1.0 1.4 1.6 2.2 2.8 3.6 4.4 5.6 10.0 18.0 28.0 40.0

Slinging near the edge of the hook may cause the rope to slip off the hook during hoisting, and a serious accident can result. Hooks have maximum strength at the middle portion.

100%

88%

79%

71%

41% SAD00479

3) Do not sling a heavy load with one rope alone, but sling with two or more ropes symmetrically wound onto the load.

k Slinging with one rope may cause turning of the load during hoisting, untwisting of the rope, or slipping of the rope from its original winding position on the load, which can result in a dangerous accident.

4) Do not sling a heavy load with ropes forming a wide hanging angle from the hook. When hoisting a load with two or more ropes, the force subjected to each rope will increase with the hanging angles. The table below shows the variation of allowable load kN {kg} when hoisting is made with two ropes, each of which is allowed to sling up to 9.8 kN {1000 kg} vertically, at various hanging angles. When two ropes sling a load vertically, up to 19.6 kN {2000 kg} of total weight can be suspended. This weight becomes 9.8 kN {1000 kg} when two ropes make a 120° hanging angle. On the other hand, two ropes are subjected to an excessive force as large as 39.2 kN {4000 kg} if they sling a 19.6 kN {2000 kg} load at a lifting angle of 150°.

! The allowable load value is estimated to be onesixth or one-seventh of the breaking strength of the rope used. 2) Sling wire ropes from the middle portion of the hook.

00-7


FOREWORD

METHOD OF DISASSEMBLING, CONNECTING PUSH-PULL TYPE COUPLER

METHOD OF DISASSEMBLING, CONNECTING PUSH-PULL TYPE COUPLER k Before carrying out the following work, release the residual pressure from the hydraulic tank. For details, see TESTING AND ADJUSTING, Releasing residual pressure from hydraulic tank. k Even if the residual pressure is released from the hydraulic tank, some hydraulic oil flows out when the hose is disconnected. Accordingly, prepare an oil receiving container. Disconnection 1) Release the residual pressure from the hydraulic tank. For details, see TESTING AND ADJUSTING, Releasing residual pressure from hydraulic tank. 2) Hold adapter (1) and push hose joint (2) into mating adapter (3). (See Fig. 1) ! The adapter can be pushed in about 3.5 mm. ! Do not hold rubber cap portion (4). 3) After hose joint (2) is pushed into adapter (3), press rubber cap portion (4) against (3) until it clicks. (See Fig. 2) 4) Hold hose adapter (1) or hose (5) and pull it out. (See Fig. 3) ! Since some hydraulic oil flows out, prepare an oil receiving container. Connection 1) Hold hose adapter (1) or hose (5) and insert it in mating adapter (3), aligning them with each other. (See Fig. 4) ! Do not hold rubber cap portion (4). 2) After inserting the hose in the mating adapter perfectly, pull it back to check its connecting condition. (See Fig. 5) ! When the hose is pulled back, the rubber cap portion moves toward the hose about 3.5 mm. This does not indicate abnormality, however.

00-8

Type 1


FOREWORD

METHOD OF DISASSEMBLING, CONNECTING PUSH-PULL TYPE COUPLER

Type 3

1) Hold the mouthpiece of the tightening portion and push body (2) in straight until sliding prevention ring (1) contacts contact surface a of the hexagonal portion at the male end.

1) Hold the mouthpiece of the tightening portion and push body (2) in straight until sliding prevention ring (1) contacts contact surface a of the hexagonal portion at the male end.

2) Hold in the condition in Step 1), and turn lever (4) to the right (clockwise).

2) Hold in the condition in Step 1), and push until cover (3) contacts contact surface a of the hexagonal portion at the male end.

3) Hold in the condition in Steps 1) and 2), and pull out whole body (2) to disconnect it.

3) Hold in the condition in Steps 1) and 2), and pull out whole body (2) to disconnect it.

•

•

Disassembly

Type 2

Hold the mouthpiece of the tightening portion and push body (2) in straight until sliding prevention ring (1) contacts contact surface a of the hexagonal portion at the male end to connect it.

Connection

Hold the mouthpiece of the tightening portion and push body (2) in straight until sliding prevention ring (1) contacts contact surface a of the hexagonal portion at the male end to connect it.

00-9


FOREWORD

COATING MATERIALS

COATING MATERIALS ! The recommended coating materials such as adhesives, gasket sealants and greases used for disassembly and assembly are listed below. ! For coating materials not listed below, use the equivalent of products shown in this list. Category

Komatsu code

Part No.

LT-1A

790-129-9030

LT-1B

790-129-9050

LT-2

09940-00030

LT-3

790-129-9060 (Set of adhesive and hardening agent)

LT-4

790-129-9040

Holtz MH 705

790-126-9120

Three bond 1735

790-129-9140

Aron-alpha 201

790-129-9130

Loctite 648-50

79A-129-9110

LG-1

790-129-9010

LG-5

790-129-9080

LG-6

790-129-9020

LG-7

790-129-9070

Three bond 1211

790-129-9090

Three bond 1207B

419-15-18131

Adhesives

Gasket sealant

00-10

Q’ty

Container

Main applications, features

• Used to prevent rubber gaskets, rubber cushions, and cock plug from coming out. • Used in places requiring an immediately effective, strong adhesive. Used for plastics (except polyethylene, 20 g Polyethylene polyprophylene, tetrafluoroethlene and (2 pcs.) container vinyl chloride), rubber, metal and nonmetal. • Features: Resistance to heat and chemicals Polyethylene 50 g • Used for anti-loosening and sealant container purpose for bolts and plugs. • Used as adhesive or sealant for metal, Adhesive: glass and plastic. 1 kg Hardening Can agent: 500 g Polyethylene • Used as sealant for machined holes. 250 g container • Used as heat-resisting sealant for 75 g Tube repairing engine. • Quick hardening type adhesive Polyethylene • Cure time: within 5 sec. to 3 min. 50 g container • Used mainly for adhesion of metals, rubbers, plastics and woods. • Quick hardening type adhesive • Quick cure type Polyethylene (max. strength after 30 minutes) 2g container • Used mainly for adhesion of rubbers, plastics and metals. • Resistance to heat, chemicals Polyethylene • Used at joint portions subject to high 50 cc container temperatures. • Used as adhesive or sealant for gaskets 200 g Tube and packing of power train case, etc. • Used as sealant for various threads, pipe joints, flanges. 1 kg Can • Used as sealant for tapered plugs, elbows, nipples of hydraulic piping. • Features: Silicon based, resistance to heat, cold 200 g Tube • Used as sealant for flange surface, tread. • Used as sealant for oil pan, final drive case, etc. • Features: Silicon based, quick hardening type • Used as sealant for flywheel housing, 1 kg Tube intake manifold, oil pan, thermostat housing, etc. • Used as heat-resisting sealant for 100 g Tube repairing engine. • Features: Silicone type, heat resistant, vibration resistant, and impact resistant 100 g Tube sealing material • Used as sealing material for transfer case 150 g

Tube


FOREWORD

Molybdenum disulphide lubricant

Komatsu code

Part No.

Q’ty

Container

LM-G

09940-00051

60 g

Can

LM-P

09940-00040

200 g

Tube

Various

Various

G2-LI

G2-CA

Grease

Primer

Adhesive

Caulking material

SYG2-400LI SYG2-350LI SYG2-400LI-A SYG2-160LI SYGA-160CNLI SYG2-400CA SYG2-350CA SYG2-400CA-A SYG2-160CA SYGA-160CNCA

Molybdenum disulphide grease LM-G (G2-M) Hyper White Grease G2-T G0-T (*) *: For use in cold district Biogrease G2B G2-BT (*) *: For high temperature and large load SUNSTAR PAINT PRIMER 580 SUPER SUNSTAR GLASS PRIMER 580 SUPER SUNSTAR PAINT PRIMER 435-95

SYG2-400B SYGA-16CNB SYG2-400BT (*) SYGA-16CNBT (*)

SUNSTAR GLASS PRIMER 435-41 SUNSTAR SASH PRIMER GP-402 SUNSTAR PENGUINE SUPER 560 SUNSTAR PENGUINE SEAL 580 SUPER “S” or “W” Sika Japan, Sikaflex 256HV SUNSTAR PENGUINE SEAL No. 2505 SEKISUI SILICONE SEALANT GE TOSHIBA SILICONES TOSSEAL 381

SYG2-400M SYG2-400M-A SYGA-16CNM SYG2-400T-A SYG2-16CNT SYG0-400T-A (*) SYG0-16CNT (*)

Various

Various

400 g × 10 Bellows type 400 g × 20 Bellows type 16 kg Can

400 g 16 kg

400 g 16 kg

Main applications, features • Used as lubricant for sliding portion (to prevent from squeaking). • Used to prevent seizure or scuffling of the thread when press fitting or shrink fitting. • Used as lubricant for linkage, bearings, etc. • General purpose type

• Used for normal temperature, light load bearing at places in contact with water or steam.

• Used for heavy load portion

• Seizure resistance and heat resistance higher than molybdenum disulfide grease Bellows type • Since this grease is white, it does not Can stand out against machine body. • Since this grease is decomposed by bacteria in short period, it has less effects Bellows type on microorganisms, animals, and plants. Can

20 ml

Glass container

20 ml

Glass container

22M-54-27230

20 ml

Glass container

22M-54-27240

150 ml

Can

22M-54-27250

20 ml

Glass container

22M-54-27210

320 ml

Ecocart (Special container)

• Used as primer for cab side (Using limit: 4 months)

417-926-3910

417-926-3910

320 ml

Polyethylene container

20Y-54-39850

310 ml

Polyethylene container

417-926-3920

320 ml

Polyethylene container

20Y-54-55130

333 ml

Polyethylene container

22M-54-27220

333 ml

Cartridge

• Used as primer for glass side (Using limit: 4 months)

Adhesive for cab glass

Category

COATING MATERIALS

• Used as primer for painted surface on cab side (Using limit: 4 months) • Used as primer for black ceramiccoated surface on glass side and for hard polycarbonate-coated surface (Using limit: 4 months) • Used as primer for sash (Alumite). (Using limit: 4 months) • Used as adhesive for glass. (Using limit: 6 months) • “S” is used for high-temperature season (April - October) and “W” for low-temperature season (November April) as adhesive for glass. (Using limit: 4 months) • Used as adhesive for glass. (Using limit: 6 months) • Used to seal joints of glass parts. (Using limit: 4 months) • Used to seal front window. (Using limit: 6 months) • Used to seal joint of glasses. Translucent white seal. (Using limit: 12 months)

00-11


FOREWORD

STANDARD TIGHTENING TORQUE

STANDARD TIGHTENING TORQUE STANDARD TIGHTENING TORQUE TABLE (WHEN USING TORQUE WRENCH) ! In the case of metric nuts and bolts for which there is no special instruction, tighten to the torque given in the table below. Tightening torque Thread diameter of bolt

Width across flats

mm

mm

Nm

kgm

6 8 10 12 14

10 13 17 19 22

11.8 – 14.7 27 – 34 59 – 74 98 – 123 153 – 190

1.2 – 1.5 2.8 – 3.5 6 – 7.5 10 – 12.5 15.5 – 19.5

16 18 20 22 24

24 27 30 32 36

235 – 285 320 – 400 455 – 565 610 – 765 785 – 980

23.5 – 29.5 33 – 41 46.5 – 58 62.5 – 78 80 – 100

27 30 33 36 39

41 46 50 55 60

1150 – 1440 1520 – 1910 1960 – 2450 2450 – 3040 2890 – 3630

118 – 147 155 – 195 200 – 250 250 – 310 295 – 370

Thread diameter of bolt

Width across flats

mm

mm

Nm

kgm

6 8 10 12

10 13 14 27

5.9 – 9.8 13.7 – 23.5 34.3 – 46.1 74.5 – 90.2

0.6 – 1.0 1.4 – 2.4 3.5 – 4.7 7.6 – 9.2

Tightening torque

Sealing surface

TABLE OF TIGHTENING TORQUES FOR FLARED NUTS ! In the case of flared nuts for which there is no special instruction, tighten to the torque given in the table below.

SAD00483

Thread diameter

Width across flat

mm

mm

Nm

kgm

14 18 22 24 30 33 36 42

19 24 27 32 36 41 46 55

24.5 ± 4.9 49 ± 19.6 78.5 ± 19.6 137.3 ± 29.4 176.5 ± 29.4 196.1 ± 49 245.2 ± 49 294.2 ± 49

2.5 ± 0.5 5±2 8±2 14 ± 3 18 ± 3 20 ± 5 25 ± 5 30 ± 5

00-12

Tightening torque


FOREWORD

STANDARD TIGHTENING TORQUE

TABLE OF TIGHTENING TORQUES FOR SPLIT FLANGE BOLTS ! In the case of split flange bolts for which there is no special instruction, tighten to the torque given in the table below.

Thread diameter

Width across flat

Tightening torque

mm

mm

Nm

kgm

10 12 16

14 17 22

59 – 74 98 – 123 235 – 285

6 – 7.5 10 – 12.5 23.5 – 29.5

TABLE OF TIGHTENING TORQUES FOR O-RING BOSS PIPING JOINTS ! Unless there are special instructions, tighten the O-ring boss piping joints to the torque below.

Thread diameter

Width across flat

mm

mm

14 20 24 33 42

Varies depending on type of connector.

Tightening torque (Nm {kgm})

Norminal No.

02 03, 04 05, 06 10, 12 14

Range 35 – 63 84 – 132 128 – 186 363 – 480 746 – 1010

{3.5 – 6.5} {8.5 – 13.5} {13.0 – 19.0} {37.0 – 49.0} {76.0 – 103}

Target 44 {4.5} 103 {10.5} 157 {16.0} 422 {43.0} 883 {90.0}

TABLE OF TIGHTENING TORQUES FOR O-RING BOSS PLUGS ! Unless there are special instructions, tighten the O-ring boss plugs to the torque below.

Thread diameter

Width across flat

mm

mm

08 10 12 14 16 18 20 24 30 33 36 42 52

14 17 19 22 24 27 30 32 32 — 36 — —

Tightening torque (Nm {kgm})

Norminal No.

08 10 12 14 16 18 20 24 30 33 36 42 52

Range 5.88 – 8.82 9.8 – 12.74 14.7 – 19.6 19.6 – 24.5 24.5 – 34.3 34.3 – 44.1 44.1 – 53.9 58.8 – 78.4 93.1 – 122.5 107.8 – 147.0 127.4 – 176.4 181.3 – 240.1 274.4 – 367.5

{0.6 – 0.9} {1.0 – 1.3} {1.5 – 2.0} {2.0 – 2.5} {2.5 – 3.5} {3.5 – 4.5} {4.5 – 5.5} {6.0 – 8.0} {9.5 – 12.5} {11.0 – 15.0} {13.0 – 18.0} {18.5 – 24.5} {28.0 – 37.5}

Target 7.35 {0.75} 11.27 {1.15} 17.64 {1.8} 22.54 {2.3} 29.4 {3.0} 39.2 {4.0} 49.0 {5.0} 68.6 {7.0} 107.8 {11.0} 124.4 {13.0} 151.9 {15.5} 210.7 {21.5} 323.4 {33.0}

00-13


FOREWORD

STANDARD TIGHTENING TORQUE

TIGHTENING TORQUE FOR 102 AND 114 ENGINE SERIES 1) BOLT AND NUTS Use these torques for bolts and nuts (unit: mm) of Cummins Engine. Thread diameter

Tightening torque

mm

Nm

kgm

6 8 10 12

10 0 2 24 0 4 43 0 6 77 0 12

1.02 0 0.20 2.45 0 0.41 4.38 0 0.61 7.85 0 1.22

2) EYE JOINTS Use these torques for eye joints (unit: mm) of Cummins Engine. Thread diameter

Tightening torque

mm

Nm

kgm

6 8 10 12 14

802 10 0 2 12 0 2 24 0 4 36 0 5

0.81 0 0.20 1.02 0 0.20 1.22 0 0.20 2.45 0 0.41 3.67 0 0.51

3) TAPERED SCREWS Use these torques for tapered screws (unit: inch) of Cummins Engine. Thread diameter

Tightening torque

inch

Nm

kgm

1 / 16 1/8 1/4 3/8 1/2 3/4 1

301 802 12 0 2 15 0 2 24 0 4 36 0 5 60 0 9

0.31 0 0.10 0.81 0 0.20 1.22 0 0.20 1.53 0 0.20 2.45 0 0.41 3.67 0 0.51 6.12 0 0.92

TIGHTENING TORQUE TABLE FOR HOSES (TAPER SEAL TYPE AND FACE SEAL TYPE) ! Tighten the hoses (taper seal type and face seal type) to the following torque, unless otherwise specified. ! Apply the following torque when the threads are coated (wet) with engine oil. Tightening torque (Nm {kgm}) Nominal size Width across of hose flats

Taper seal type

Face seal type

Thread size Nominal thread Root diameter size - Threads per (mm) (Reference) (mm) inch, Thread series

Range

Target

34 – 54 {3.5 – 5.5}

44 {4.5}

9 — – 18UN 16

14.3

34 – 63 {3.5 – 6.5}

44 {4.5}

14

22

54 – 93 {5.5 – 9.5}

74 {7.5}

11 — – 16UN 16

17.5

24

59 – 98 {6.0 – 10.0}

78 {8.0}

18

04

27

84 – 132 {8.5 – 13.5}

103 {10.5}

22

13 — – 16UN 16

20.6

05

32

128 – 186 {13.0 – 19.0}

157 {16.0}

24

1 – 14UNS

25.4

06

36

177 – 245 {18.0 – 25.0}

216 {22.0}

30

3 1 — – 12UN 16

30.2

(10)

41

177 – 245 {18.0 – 25.0}

216 {22.0}

33

(12)

46

197 – 294 {20.0 – 30.0}

245 {25.0}

36

(14)

55

246 – 343 {25.0 – 35.0}

294 {30.0}

42

02

03

00-14

19


FOREWORD

ELECTRIC WIRE CODE

ELECTRIC WIRE CODE In the wiring diagrams, various colors and symbols are employed to indicate the thickness of wires. This wire code table will help you understand WIRING DIAGRAMS. Example: 5WB indicates a cable having a nominal number 5 and white coating with black stripe.

CLASSIFICATION BY THICKNESS Copper wire Cable O.D. (mm)

Current rating (A)

Applicable circuit

0.88

2.4

12

Starting, lighting, signal etc.

0.32

2.09

3.1

20

Lighting, signal etc.

65

0.32

5.23

4.6

37

Charging and signal

15

84

0.45

13.36

7.0

59

Starting (Glow plug)

40

85

0.80

42.73

11.4

135

Starting

60

127

0.80

63.84

13.6

178

Starting

100

217

0.80

109.1

17.6

230

Starting

Norminal number

Number of strands

Dia. of strands (mm2)

Cross section (mm2)

0.85

11

0.32

2

26

5

CLASSIFICATION BY COLOR AND CODE Circuits Priority Classification

1

Primary

Charging

Ground

Starting

Lighting

Instrument

Signal

Other

Code

W

B

B

R

Y

G

L

Color

White

Black

Black

Red

Yellow

Green

Blue

Code

WR

BW

RW

YR

GW

LW

2 Color White & Red

Code

WB

White & Black Red & White Rellow & Red Green & White Blue & White BY

RB

YB

GR

LR

3

4

Auxiliary

Color White & Black

Code

WL

Black & Yellow Red & Black Yellow & Black Green & Red Blue & Yellow BR

Color White & Blue

Code

Color White & Green

Code

Color

WG

RY

Black & Red Red & Yellow RG

YG

GY

LY

Yellow & Green

Green & Yellow

Blue & Yellow

YL

GB

LB

5 Red & Green Yellow & Blue Green & Black Blue & Black RL

YW

GL

6 Red & Blue Yellow & White Green & Blue

00-15


FOREWORD

CONVERSION TABLE

CONVERSION TABLE METHOD OF USING THE CONVERSION TABLE The Conversion Table in this section is provided to enable simple conversion of figures. For details of the method of using the Conversion Table, see the example given below.

EXAMPLE • Method of using the Conversion Table to convert from millimeters to inches 1. Convert 55 mm into inches. (1) Locate the number 50 in the vertical column at the left side, take this as (A), then draw a horizontal line from (A). (2) Locate the number 5 in the row across the top, take this as (B), then draw a perpendicular line down from (B). (3) Take the point where the two lines cross as (C). This point (C) gives the value when converting from millimeters to inches. Therefore, 55 mm = 2.165 inches. 2. Convert 550 mm into inches. (1) The number 550 does not appear in the table, so divide by 10 (move the decimal point one place to the left) to convert it to 55 mm. (2) Carry out the same procedure as above to convert 55 mm to 2.165 inches. (3) The original value (550 mm) was divided by 10, so multiply 2.165 inches by 10 (move the decimal point one place to the right) to return to the original value. This gives 550 mm = 21.65 inches. (B) Millimeters to inches 1 mm = 0.03937 in

(A)

00-16

0

1

2

3

4

0 10 20 30 40

0 0.394 0.787 1.181 1.575

0.039 0.433 0.827 1.220 1.614

0.079 0.472 0.866 1.260 1.654

0.118 0.512 0.906 1.299 1.693

0.157 0.551 0.945 1.339 1.732

50 60 70 80 90

1.969 2.362 2.756 3.150 3.543

2.008 2.402 2.795 3.189 3.583

2.047 2.441 2.835 3.228 3.622

2.087 2.480 2.874 3.268 3.661

2.126 2.520 2.913 3.307 3.701

5 0.197 0.591 0.984 1.378 1.772 (C) 2.165 2.559 2.953 3.346 3.740

6

7

8

9

0.236 0.630 1.024 1.417 1.811

0.276 0.669 1.063 1.457 1.850

0.315 0.709 1.102 1.496 1.890

0.354 0.748 1.142 1.536 1.929

2.205 2.598 2.992 3.386 3.780

2.244 2.638 3.032 3.425 3.819

2.283 2.677 3.071 3.465 3.858

2.323 2.717 3.110 3.504 3.898


FOREWORD

CONVERSION TABLE

Millimeters to Inches 1 mm = 0.03937 in

0

1

2

3

4

5

6

7

8

9

0

0.039

0.079

0.118

0.157

0.197

0.236

0.276

0.315

0.354

10

0.394

0.433

0.472

0.512

0.551

0.591

0.630

0.669

0.709

0.748

20

0.787

0.827

0.866

0.906

0.945

0.984

1.024

1.063

1.102

1.142

30

1.181

1.220

1.260

1.299

1.339

1.378

1.417

1.457

1.496

1.536

40

1.575

1.614

1.654

1.693

1.732

1.772

1.811

1.850

1.890

1.929

50

1.969

2.008

2.047

2.087

2.126

2.165

2.205

2.244

2.283

2.323

60

2.362

2.402

2.441

2.480

2.520

2.559

2.598

2.638

2.677

2.717

70

2.756

2.795

2.835

2.874

2.913

2.953

2.992

3.032

3.071

3.110

80

3.150

3.189

3.228

3.268

3.307

3.346

3.386

3.425

3.465

3.504

90

3.543

3.583

3.622

3.661

3.701

3.740

3.780

3.819

3.858

3.898

0

Kilogram to Pound 1 kg = 2.2046 lb

0 0

0

1

2

3

4

5

6

7

8

9

2.20

4.41

6.61

8.82

11.02

13.23

15.43

17.64

19.84

10

22.05

24.25

26.46

28.66

30.86

33.07

35.27

37.48

39.68

41.89

20

44.09

46.30

48.50

50.71

51.91

55.12

57.32

59.53

61.73

63.93

30

66.14

68.34

70.55

72.75

74.96

77.16

79.37

81.57

83.78

85.98

40

88.18

90.39

92.59

94.80

97.00

99.21

101.41

103.62

105.82

108.03

50

110.23

112.44

114.64

116.85

119.05

121.25

123.46

125.66

127.87

130.07

60

132.28

134.48

136.69

138.89

141.10

143.30

145.51

147.71

149.91

152.12

70

154.32

156.53

158.73

160.94

163.14

165.35

167.55

169.76

171.96

174.17

80

176.37

178.57

180.78

182.98

185.19

187.39

189.60

191.80

194.01

196.21

90

198.42

200.62

202.83

205.03

207.24

209.44

211.64

213.85

216.05

218.26

00-17


FOREWORD

CONVERSION TABLE

Liter to U.S. Gallon 1l = 0.2642 U.S. Gal

0

1

2

3

4

5

6

7

8

9

0

0.264

0.528

0.793

1.057

1.321

1.585

1.849

2.113

2.378

10

2.642

2.906

3.170

3.434

3.698

3.963

4.227

4.491

4.755

5.019

20

5.283

5.548

5.812

6.076

6.340

6.604

6.869

7.133

7.397

7.661

30

7.925

8.189

8.454

8.718

8.982

9.246

9.510

9.774

10.039

10.303

40

10.567

10.831

11.095

11.359

11.624

11.888

12.152

12.416

12.680

12.944

50

13.209

13.473

13.737

14.001

14.265

14.529

14.795

15.058

15.322

15.586

60

15.850

16.115

16.379

16.643

16.907

17.171

17.435

17.700

17.964

18.228

70

18.492

18.756

19.020

19.285

19.549

19.813

20.077

20.341

20.605

20.870

80

21.134

21.398

21.662

21.926

22.190

22.455

22.719

22.983

23.247

23.511

90

23.775

24.040

24.304

24.568

24.832

25.096

25.361

25.625

25.889

26.153

0

Liter to U.K. Gallon 1l = 0.21997 U.K. Gal

0

1

2

3

4

5

6

7

8

9

0

0.220

0.440

0.660

0.880

1.100

1.320

1.540

1.760

1.980

10

2.200

2.420

2.640

2.860

3.080

3.300

3.520

3.740

3.950

4.179

20

4.399

4.619

4.839

5.059

5.279

5.499

5.719

5.939

6.159

6.379

30

6.599

6.819

7.039

7.259

7.479

7.969

7.919

8.139

8.359

8.579

40

8.799

9.019

9.239

9.459

9.679

9.899

10.119

10.339

10.559

10.778

50

10.998

11.281

11.438

11.658

11.878

12.098

12.318

12.528

12.758

12.978

60

13.198

13.418

13.638

13.858

14.078

14.298

14.518

14.738

14.958

15.178

70

15.398

15.618

15.838

16.058

16.278

16.498

16.718

16.938

17.158

17.378

80

17.598

17.818

18.037

18.257

18.477

18.697

18.917

19.137

19.357

19.577

90

19.797

20.017

20.237

20.457

20.677

20.897

21.117

21.337

21.557

21.777

0

00-18


FOREWORD

CONVERSION TABLE

kgm to ft. lb 1 kgm = 7.233 ft. lb

0

1

2

3

4

5

6

7

8

9

0

0

7.2

14.5

21.7

28.9

36.2

43.4

50.6

57.9

65.1

10

72.3

79.6

86.8

94.0

101.3

108.5

115.7

123.0

130.2

137.4

20

144.7

151.9

159.1

166.4

173.6

180.8

188.1

195.3

202.5

209.8

30

217.0

224.2

231.5

238.7

245.9

253.2

260.4

267.6

274.9

282.1

40

289.3

296.6

303.8

311.0

318.3

325.5

332.7

340.0

347.2

354.4

50

361.7

368.9

376.1

383.4

390.6

397.8

405.1

412.3

419.5

426.8

60

434.0

441.2

448.5

455.7

462.9

470.2

477.4

484.6

491.8

499.1

70

506.3

513.5

520.8

528.0

535.2

542.5

549.7

556.9

564.2

571.4

80

578.6

585.9

593.1

600.3

607.6

614.8

622.0

629.3

636.5

643.7

90

651.0

658.2

665.4

672.7

679.9

687.1

694.4

701.6

708.8

716.1

100

723.3

730.5

737.8

745.0

752.2

759.5

766.7

773.9

781.2

788.4

110

795.6

802.9

810.1

817.3

824.6

831.8

839.0

846.3

853.5

860.7

120

868.0

875.2

882.4

889.7

896.9

904.1

911.4

918.6

925.8

933.1

130

940.3

947.5

954.8

962.0

969.2

976.5

983.7

990.9

998.2

1005.4

140

1012.6

1019.9

1027.1

1034.3

1041.5

1048.8

1056.0

1063.2

1070.5

1077.7

150

1084.9

1092.2

1099.4

1106.6

1113.9

1121.1

1128.3

1135.6

1142.8

1150.0

160

1157.3

1164.5

1171.7

1179.0

1186.2

1193.4

1200.7

1207.9

1215.1

1222.4

170

1129.6

1236.8

1244.1

1251.3

1258.5

1265.8

1273.0

1280.1

1287.5

1294.7

180

1301.9

1309.2

1316.4

1323.6

1330.9

1338.1

1345.3

1352.6

1359.8

1367.0

190

1374.3

1381.5

1388.7

1396.0

1403.2

1410.4

1417.7

1424.9

1432.1

1439.4

00-19


FOREWORD

CONVERSION TABLE

kg/cm2 to lb/in2 1kg/cm2 = 14.2233 lb/in2

0

1

2

3

4

5

6

7

8

9

0

0

14.2

28.4

42.7

56.9

71.1

85.3

99.6

113.8

128.0

10

142.2

156.5

170.7

184.9

199.1

213.4

227.6

241.8

256.0

270.2

20

284.5

298.7

312.9

327.1

341.4

355.6

369.8

384.0

398.3

412.5

30

426.7

440.9

455.1

469.4

483.6

497.8

512.0

526.3

540.5

554.7

40

568.9

583.2

597.4

611.6

625.8

640.1

654.3

668.5

682.7

696.9

50

711.2

725.4

739.6

753.8

768.1

782.3

796.5

810.7

825.0

839.2

60

853.4

867.6

881.8

896.1

910.3

924.5

938.7

953.0

967.2

981.4

70

995.6

1010

1024

1038

1053

1067

1081

1095

1109

1124

80

1138

1152

1166

1181

1195

1209

1223

1237

1252

1266

90

1280

1294

1309

1323

1337

1351

1365

1380

1394

1408

100

1422

1437

1451

1465

1479

1493

1508

1522

1536

1550

110

1565

1579

1593

1607

1621

1636

1650

1664

1678

1693

120

1707

1721

1735

1749

1764

1778

1792

1806

1821

1835

130

1849

1863

1877

1892

1906

1920

1934

1949

1963

1977

140

1991

2005

2020

2034

2048

2062

2077

2091

2105

2119

150

2134

2148

2162

2176

2190

2205

2219

2233

2247

2262

160

2276

2290

2304

2318

2333

2347

2361

2375

2389

2404

170

2418

2432

2446

2460

2475

2489

2503

2518

2532

2546

180

2560

2574

2589

2603

2617

2631

2646

2660

2674

2688

190

2702

2717

2731

2745

2759

2773

2788

2802

2816

2830

200

2845

2859

2873

2887

2901

2916

2930

2944

2958

2973

210

2987

3001

3015

3030

3044

3058

3072

3086

3101

3115

220

3129

3143

3158

3172

3186

3200

3214

3229

3243

3257

230

3271

3286

3300

3314

3328

3343

3357

3371

3385

3399

240

3414

3428

3442

3456

3470

3485

3499

3513

3527

3542

00-20


FOREWORD

CONVERSION TABLE

Temperature Fahrenheit-Centigrade Conversion ; a simple way to convert a Fahrenheit temperature reading into a Centigrade temperature reading or vice versa is to enter the accompanying table in the center or boldface column of figures. These figures refer to the temperature in either Fahrenheit or Centigrade degrees. If it is desired to convert from Fahrenheit to Centigrade degrees, consider the center column as a table of Fahrenheit temperatures and read the corresponding Centigrade temperature in the column at the left. If it is desired to convert from Centigrade to Fahrenheit degrees, consider the center column as a table of Centigrade values, and read the corresponding Fahrenheit temperature on the right. 1°C = 33.8°F

°C

°F

°C

°F

°C

°F

°C

°F

–40.4 –37.2 –34.4 –31.7 –28.9

–40 –35 –30 –25 –20

–40.0 –31.0 –22.0 –13.0 –4.0

–11.7 –11.1 –10.6 –10.0 –9.4

11 12 13 14 15

51.8 53.6 55.4 57.2 59.0

7.8 8.3 8.9 9.4 10.0

46 47 48 49 50

114.8 116.6 118.4 120.2 122.0

27.2 27.8 28.3 28.9 29.4

81 82 83 84 85

117.8 179.6 181.4 183.2 185.0

–28.3 –27.8 –27.2 –26.7 –26.1

–19 –18 –17 –16 –15

–2.2 –0.4 1.4 3.2 5.0

–8.9 –8.3 –7.8 –7.2 –6.7

16 17 18 19 20

60.8 62.6 64.4 66.2 68.0

10.6 11.1 11.7 12.2 12.8

51 52 53 54 55

123.8 125.6 127.4 129.2 131.0

30.0 30.6 31.1 31.7 32.2

86 87 88 89 90

186.8 188.6 190.4 192.2 194.0

–25.6 –25.0 –24.4 –23.9 –23.3

–14 –13 –12 –11 –10

6.8 8.6 10.4 12.2 14.0

–6.1 –5.6 –5.0 –4.4 –3.9

21 22 23 24 25

69.8 71.6 73.4 75.2 77.0

13.3 13.9 14.4 15.0 15.6

56 57 58 59 0

132.8 134.6 136.4 138.2 140.0

32.8 33.3 33.9 34.4 35.0

91 92 93 94 95

195.8 197.6 199.4 201.2 203.0

–22.8 –22.2 –21.7 –21.1 –20.6

–9 –8 –7 –6 –5

15.8 17.6 19.4 21.2 23.0

–3.3 –2.8 –2.2 –1.7 –1.1

26 27 28 29 30

78.8 80.6 82.4 84.2 86.0

16.1 16.7 17.2 17.8 18.3

61 62 63 64 65

141.8 143.6 145.4 147.2 149.0

35.6 36.1 36.7 37.2 37.8

96 97 98 99 100

204.8 206.6 208.4 210.2 212.0

–20.0 –19.4 –18.9 –18.3 –17.8

–4 –3 –2 –1 0

24.8 26.6 28.4 30.2 32.0

–0.6 0 0.6 1.1 1.7

31 32 33 34 35

87.8 89.6 91.4 93.2 95.0

18.9 19.4 20.0 20.6 21.1

66 67 68 69 70

150.8 152.6 154.4 156.2 158.0

40.6 43.3 46.1 48.9 51.7

105 110 115 120 125

221.0 230.0 239.0 248.0 257.0

–17.2 –16.7 –16.1 –15.6 –15.0

1 2 3 4 5

33.8 35.6 37.4 39.2 41.0

2.2 2.8 3.3 3.9 4.4

36 37 38 39 40

96.8 98.6 100.4 102.2 104.0

21.7 22.2 22.8 23.3 23.9

71 72 73 74 75

159.8 161.6 163.4 165.2 167.0

54.4 57.2 60.0 62.7 65.6

130 135 140 145 150

266.0 275.0 284.0 293.0 302.0

–14.4 –13.9 –13.3 –12.8 –12.2

6 7 8 9 10

42.8 44.6 46.4 48.2 50.0

5.0 5.6 6.1 6.7 7.2

41 42 43 44 45

105.8 107.6 109.4 111.2 113.0

24.4 25.0 25.6 26.1 26.7

76 77 78 79 80

168.8 170.6 172.4 174.2 176.0

68.3 71.1 73.9 76.7 79.4

155 160 165 170 175

311.0 320.0 329.0 338.0 347.0

00-21


FOREWORD

UNITS

UNITS In this manual, the measuring units are indicated with Internatinal System of units (SI). As for reference, conventionally used Gravitational System of units are indicated in parentheses {

}.

Example: N {kg} Nm {kgm} MPa {kg/cm2} kPa {mmH2O} kPa {mmHg} kW/rpm {HP/rpm} g/kWh {g/HPh}

00-22

04-05


01 GENERAL

GENERAL ASSEMBLY DRAWINGS......................................... 01-2 SPECIFICATIONS ..................................................................... 01-3 WEIGHT TABLE ........................................................................ 01-7 LIST OF LUBRICANT AND COOLANT..................................... 01-9

WA150-5

01-1


GENERAL

GENERAL ASSEMBLY DRAWINGS

GENERAL ASSEMBLY DRAWINGS

Item Operating weight (With BOC) Rated load

WA150-5

kg

7,425

kN {kg}

23.5 {2,400}

Bucket capacity (piled) (With BOC)

m3

1.5

Engine model

KOMATSU SAA4D102E-2 Diesel engine

kW {HP} / rpm

71 {96} / 2,000

mm

6,320

Flywheel horse power A

Unit

Overall length (With BOC)

B

Overall height

mm

3,035

C

Overall height when bucket is raised

mm

4,630

D

Overall width

mm

2,250

E

Min. ground clearance

mm

400

F

Bucket width

mm

2,390

G

Dumping clearance

Tip of bucket/Tip of BOC

mm

2,765 / 2,705

H

Dumping reach

Tip of bucket/Tip of BOC

mm

940/ 970

I

Bucket dump angle

deg.

45

Tip of bucket/Tip of BOC

mm

5,165 / 5,185

Center of outside wheel

mm

4,470

F1

km / h

4.6 – 13.0

F2

km / h

13.0

F3

km / h

20.0

F4

km / h

38.0

R1

km / h

4.6 – 13.0

R2

km / h

13.0

R3

km / h

20.0

R4

km / h

38.0

Min. turning radius

Travel speed

01-2

WA150-5


GENERAL

SPECIFICATIONS

Weight

SPECIFICATIONS Machine model

WA150-5

Serial No.

65001 and up

Operating weight (With BOC)

kg

7,425

Distribution (front) SAE travel posture

kg

2,975

Distribution (rear) SAE travel posture

kg

4,450

Bucket capacity (piled) (With BOC)

1.5

kN {kg}

23.5 {2,400}

FORWARD 1st

km / h

4.6 – 13.0

FORWARD 2nd

km / h

13.0

FORWARD 3rd

km / h

20.0

FORWARD 4th

km / h

38.0

REVERSE 1st

km / h

4.6 – 13.0

Rated load

Performance

Travel speed

REVERSE 2nd

km / h

13.0

REVERSE 3rd

km / h

20.0

REVERSE 4th

km / h

38.0

FORWARD

kN {kg}

63.7 {6,500}

REVERSE

kN {kg}

63.7 {6,500}

deg.

25

mm

4,470

Min. turning radius [SAE travel posture] (Tip of bucket/Tip of BOC)

mm

5,165 / 5,185

Overall length (with BOC)

mm

6,320

Overall width (chassis)

mm

2,250

Max. rimpull Gradeability

Dimensions

Min. turning radius

(Center of outside wheel)

Bucket width (with BOC)

mm

2,390

Overall height (top of cab)

mm

3,035

Overall height (Bucket approx. raised to max.)

mm

4,630

Wheel base

mm

2,600

Tread

mm

1,780

Min. ground clearance

mm

400

Max. height of bucket hinge pin

mm

3,485

Dumping clearance (Tip of bucket/Tip of BOC)

mm

2,765 / 2,705

Dumping reach (Tip of bucket/Tip of BOC)

mm

940 / 970

Steering angle

deg.

40

Bucket tilt angle (travel posture)

deg.

46

Bucket tilt angle (max. height)

deg.

66

Bucket dump angle (max. height)

deg.

46

Digging depth (10° dump) (Tip of bucket/Tip of BOC)

mm

220 / 255

WA150-5

01-3


GENERAL

SPECIFICATIONS

Machine model

WA150-5

Serial No.

65001 and up

Model

SAA4D102E-2

Type

4-cycle, water-cooled, in-line, 4-cylinder, direct injection with turbocharger, air-cooled after cooler

Engine

No. of cylinders - bore x stroke

mm

4 – 102 x 120

Piston displacement

l {cc}

3.92 {3,920}

Flywheel horsepower

kW / rpm

71 / 2,000

{HP / rpm}

{96 / 2,000}

Maximum torque

Nm / rpm

402 / 1,300

{kgm / rpm}

{41 / 1,300}

g / kWh {g / HPh}

219 {163}

High idle speed

rpm

2,250

Low idle speed

rpm

Min. fuel consumption ratio

Starting motor

Axle

Power train

Alternator

Tire

825 24 V 5.5 kW 24 V 35 A

Battery (*1)

24 V 92 Ah x 2 pcs.

HST pump

Variable displacement swash plate type piston pump

HST motor 1

Variable displacement bent axis type piston motor

HST motor 2

Variable displacement bent axis type piston motor

Transfer

Multiple shaft planetary compound-type, spur gear constant mesh-type, 2 alternative power systems

Reduction gear

Spiral bevel gear, splash lubrication type

Differential

Straight bevel gear type, torque portioning

Final drive

Planetary gear 1-stage, splash lubrication type

Drive type

Front and rear wheel drive

Front axle

Fixed to frame, semi-floating type

Rear axle

Center pin support, semi-floating type

Tire size

16.9–24–10PR (L2)

Rim size

W15L × 24

Inflation pressure

Front tire

kPa {kg / cm²}

Rear tire

kPa {kg / cm²}

Braking system Main brake

Brake type

Brakes

Operation method

Parking brake

235 {2.4} 235 {2.4} 4 wheel braking, Front and rear wheel independent system control Enclosed wet multiple disc type Hydraulically controlled

Control method

Hydraulic power servo assisted brake

Braking system

Speed change gear output shaft braking

Brake type

Wet multiple disc type

Operation method

Mechanical type

Control method

Hand lever type

*1: Battery capacity (Ah) shows the rate of 5 hours.

01-4 (5)

WA150-5


Steering control

GENERAL

SPECIFICATIONS

Machine model

WA150-5

Serial No.

65001 and up

Type

Articulated steering

Control

Hydraulic control

Work equipment and Steering pump • Type Hydraulic pump

• Theoretical capacity

Gear type cm³/rev

Brake and cooling fan pump • Type • Theoretical capacity

Gear type cm³/rev

Steering cylinder

• Theoretical capacity

Hydraulic system

Gear type cm³/rev

Type Cylinder inner diameter

mm

55

Piston rod diameter

mm

30

Stroke

mm

375

Max. length between pins

mm

1,020

Min. length between pins

mm

645

Lift cylinder

Reciprocating piston type

Cylinder inner diameter

mm

110

Piston rod diameter

mm

60

Stroke

mm

628

Max. length between pins

mm

1,659

Min. length between pins

mm

Type Bucket cylinder

6.4 Reciprocating piston type

Type Cylinder

10.5

Transfer lubrication pump • Type

WA150-5

63.1

1,031 Reciprocating piston type

Cylinder inner diameter

mm

110

Piston rod diameter

mm

55

Stroke

mm

452

Max. length between pins

mm

1,367

Min. length between pins

mm

915

01-5


GENERAL

SPECIFICATIONS

Machine model

WA150-5

Serial No.

65001 and up

Hydraulic system

Control valve

Work equipment control valve

• Set pressure

MPa {kg / cm²}

• Type

20.6 {210}

Orbit-roll type MPa {kg / cm²}

18.6 {190}

Cooling fan motor • Type

Link type Bucket edge type

01-6

2-spool type

Steering valve

• Set pressure Motor

Work equipment

• Type

Fixed displacement piston type Single link Flat blade with top BOC

WA150-5


GENERAL

WEIGHT TABLE

WEIGHT TABLE This weight table is a guide for use when transporting or handling components. Unit: kg Machine model

WA150-5

Serial Numbers

65001 and up

Engine (without coolant and oil)

450

Cooling assembly (without coolant)

71

Cooling fan motor

6

Damper

3

HST pump

56

HST motor 1

26

HST motor 2

26

Transfer

158

Front drive shaft

14

Rear drive shaft

4

Front axle

410

Rear axle

380

Axle pivot (rear axle)

66

Wheel (each)

53

Tire (each)

91

Orbit-roll valve

7

Priority valve

6

Steering cylinder assembly (each)

13

Brake valve

10

Hydraulic tank (without hydraulic oil)

59

3-gear pump unit

20

Work equipment PPC valve

3

Work equipment control valve

19

Lift cylinder assembly (each)

64

Bucket cylinder assembly

50

Engine hood (with side panel)

140

Front frame

593

Rear frame

573

WA150-5

01-7


GENERAL

WEIGHT TABLE

Unit: kg Machine model

WA150-5

Serial Numbers

65001 and up

Lift arm (including bushing) Bucket

(1.5m3,

including BOC)

Bell crank

447 595 108

Bucket link

17

Counterweight

660

Additional counterweight (1 piece)

100

Fuel tank (without fuel)

70

Battery (each)

33

Operator’s Cab (including air conditioner and interior parts)

755

Operator’s seat

41

01-8 (5)

WA150-5


GENERAL

LIST OF LUBRICANT AND COOLANT

LIST OF LUBRICANT AND COOLANT For details of the notes (Note 1, Note 2, ---) in the table, see the Operation and Maintenance Manual.

Reservoir

Refill

WA150-5

Fuel tank

Cooling system

14.5

133

17

3.70

3.83

35.14

4.49

47

14.0

14.5

12.42

3.70

3.83

Transfer case

Hydraulic system

Front

Rear

Liters

14

4.8

90

14.0

US gal

3.70

1.27

23.78

Liters

12.5

4.4

US gal

3.30

1.16

Capacity Specified

Axle

Engine oil pan

01-9 (5)


10 STRUCTURE, FUNCTION AND MAINTENANCE STANDARD ENGINE MOUNT AND TRANSFER MOUNT 10- 2 DAMPER........................................................ 10- 3 COOLING SYSTEM....................................... 10- 4 POWER TRAIN.............................................. 10- 5 POWER TRAIN SYSTEM DIAGRAM ............ 10- 6 DRIVE SHAFT (PROPELLER SHAFT) ......... 10- 8 HST HYDRAULIC PIPING DIAGRAM ........... 10- 9 HST PUMP .................................................... 10-10 HIGH-PRESSURE RELIEF VALVE ............... 10-12 LOW-PRESSURE RELIEF VALVE................ 10-14 HST CHARGE PUMP .................................... 10-15 SPEED-RELATED VALVE (DA VALVE) ....... 10-16 HIGH-PRESSURE CUT-OFF VALVE............ 10-17 HST MOTOR ................................................. 10-18 EP SERVO VALVE ........................................ 10-21 HA SERVO VALVE ........................................ 10-22 FORWARD-REVERSE SHUTTLE VALVE .... 10-23 TRANSFER.................................................... 10-24 CLUTCH SOLENOID VALVE ........................ 10-35 AXLE .............................................................. 10-36 DIFFERENTIAL ............................................. 10-38 LIMITED-SLIP DIFFERENTIAL ..................... 10-44 FINAL DRIVE ................................................. 10-48 AXLE MOUNTING AND CENTER HINGE PIN .............................. 10-50 STEERING PIPING ....................................... 10-55 STEERING COLUMN .................................... 10-56 PRIORITY VALVE ......................................... 10-57 ORBIT-ROLL VALVE ..................................... 10-60 STEERING CYLINDER ................................. 10-68 EMERGENCY STEERING PIPING ............... 10-70 EMERGENCY STEERING VALVE ................ 10-71 BRAKE PIPING.............................................. 10-74 BRAKE VALVE .............................................. 10-75 INCHING VALVE ........................................... 10-79 CHARGE VALVE ........................................... 10-80 ACCUMULATOR (FOR BRAKE) ................... 10-84 SLACK ADJUSTER ....................................... 10-85 BRAKE ........................................................... 10-88 PARKING BRAKE CONTROL ....................... 10-91 PARKING BRAKE.......................................... 10-92 HYDRAULIC PIPING ..................................... 10-94 WORK EQUIPMENT LEVER LINKAGE ........ 10-96 HYDRAULIC TANK........................................ 10-97

WA150-5

3-GEAR PUMP UNIT....................................10-100 ACCUMULATOR (FOR PPC CIRCUIT) .......10-102 LOCK VALVE ...............................................10-103 E.C.S.S. VALVE ...........................................10-104 ACCUMULATOR (FOR E.C.S.S.) ................10-107 HYDRAULIC PIPING OF COOLING SYSTEM...............................10-108 COOLING FAN MOTOR...............................10-109 WORK EQUIPMENT CONTROL VALVE .....10-110 WORK EQUIPMENT PPC VALVE ...............10-123 WORK EQUIPMENT LINKAGE....................10-130 BUCKET .......................................................10-132 BUCKET POSITIONER AND BOOM KICK-OUT ..................................10-133 WORK EQUIPMENT CYLINDER .................10-139 AIR CONDITIONER......................................10-140 MACHINE MONITORING SYSTEM .............10-141 MACHINE MONITOR ...................................10-151 LIST OF ITEMS DISPLAYED ON MONITOR........................................10-152 ELECTRICAL SYSTEM (HST CONTROLLER SYSTEM) ............10-178 HST CONTROLLER .....................................10-182 ENGINE START CIRCUIT............................10-183 ENGINE STOP CIRCUIT..............................10-185 PREHEATING CIRCUIT...............................10-186 PARKING BRAKE CIRCUIT.........................10-187 ELECTRONICALLY CONTROLLED SUSPENSION SYSTEM........................10-190 SENSORS ....................................................10-191

10-1


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

ENGINE MOUNT AND TRANSFER MOUNT

ENGINE MOUNT AND TRANSFER MOUNT

10-2

WA150-5


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

DAMPER

DAMPER

Unit: mm No.

Check item

1

Distance between HST pump mounting face and end of hub

2

Wear of flange and insert

3. Flange 4. HST pump input shaft 5. Hub 6. Cover 7. Flywheel 8. Insert

WA150-5

Criteria

Remedy

Standard size

Repair limit

61.2

± 0.8 Repair limit: 1.0

Adjust Replace

Outline • The damper reduces the torsional vibration caused by fluctuation of the engine torque to protect the drive system after the engine from the torsional vibration. • The power from the engine is transmitted through flywheel (7) to flange (3), which absorbs the torsional vibration, and then transmitted through hub (5) to the HST pump.

10-3


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

COOLING SYSTEM

COOLING SYSTEM

1. Oil cooler 2. After cooler 3. Radiator

4. Reservoir tank 5. Cooling fan 6. Cooling fan motor

Specification Radiator

Oil cooler

After cooler

AL WAVE–4

CF40–1

AL WAVE

3.5 / 2

3.5 / 2

4.0 / 2

Total heat radiating area (m2)

22.0

5.72

5.75

Pressure valve opening pressure (kPa {kg/cm2})

68.6 {0.7}

Vacuum valve opening pressure (kPa {kg/cm2})

0 – 4.9 {0 – 0.05}

Core type Fin pitch (mm)

10-4

WA150-5


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

POWER TRAIN

POWER TRAIN

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

Engine Damper HST pump 3-gear pump unit High-pressure hose HST motor 1 HST motor 2 Transfer Front drive shaft Front axle Rear drive shaft Rear axle

WA150-5

10-5


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

POWER TRAIN SYSTEM DIAGRAM

POWER TRAIN SYSTEM DIAGRAM

10-6

WA150-5


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25.

Engine Damper HST pump Work equipment and Steering pump Brake and cooling fan pump Transfer lubricating oil pump High-pressure hose HST motor 1 HST motor 2 Emergency steering valve (If equipped) Transfer Transfer clutch Parking brake Front drive shaft Front axle Differential Wet multiple disc brake Final drive Front tire Rear drive shaft Rear axle Differential Wet multiple disc brake Final drive Rear tire

WA150-5

POWER TRAIN SYSTEM DIAGRAM

Outline • The power of engine (1) is transmitted to HST pump (3) through damper (2) which is installed to the flywheel and which absorbs the torsional vibration of the power, • The power of engine (1) is also transmitted to HST pump (3), HST charge pump built in HST pump (3), work equipment and steering pump (4) connected to HST pump (3), brake and cooling fan pump (5), and transfer lubricating oil pump (6). • HST pump (3) is equipped with the forward-reverse shifting valve and servo piston, which changes the discharge direction and discharge rate of HST pump (3) continuously by changing the swash plate angle. • HST motors (8) and (9) are installed to transfer (11) and connected to HST pump (3) by highpressure hose (7). • The turning direction and speed of HST motors (8) and (9) are changed by the hydraulic power of HST pump (3) to control the travel direction and travel speed of the machine. • The power of HST motor 1 (8) is transmitted through transfer clutch (12) in transfer (11) to the output shaft. The power of HST motor 2 (9) is transmitted through the gear in transfer (11) to the output shaft. • Parking brake (13) is installed on the rear side in transfer (11). It operates the wet multiple disc brake to stop the machine according to the operation of the parking brake lever. • The power for the front side is transmitted through front drive shaft (14) to front axle (15). The power for the rear side is transmitted through rear drive shaft (20) to rear axle (21). • The power transmitted to axles (15) and (21) is reduced in speed by the pinion gears of differentials (16) and (22), and then transmitted through the sun gear shaft to the sun gear. • The power of the sun gear is reduced in speed by the planetary mechanisms of final drives (18) and (24), and then transmitted through the axle shaft and wheels to tires (19) and (25).

10-7


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

DRIVE SHAFT

DRIVE SHAFT

1. 2. 3. 4. 5.

Front axle Front drive shaft Transfer Rear drive shaft Rear axle

10-8

Outline • The power from the output shaft of the transfer is transmitted through front drive shaft (2) and rear drive shaft (4) to front axle (1) and rear axle (5). • When the machine is articulated or it receives an impact from the road during travel or a working impact, the positions of the transfer and front and rear axles change. The drive shafts can change their angles and lengths by means of the universal joints and sliding joints so that the power will be transmitted without damaging any part even when the positions of the components change because of the impacts.

WA150-5


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

HST HYDRAULIC PIPING DIAGRAM

HST HYDRAULIC PIPING DIAGRAM

1. 2. 3. 4. 5. 6.

Hydraulic tank HST pump Clutch solenoid valve HST oil filter HST motor 1 HST motor 2

WA150-5

10-9


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

HST PUMP

HST PUMP a HST: Abbreviation for Hydro Static Transmission

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

Forward-reverse shifting solenoid valve High-pressure cut-off valve Speed-related valve (DA valve) Charge pump Low-pressure relief valve Servo cylinder High-pressure relief valve Control plate Cylinder block Piston Swash plate

Specifications Model Type Theoretical capacity (cc / rev) Set pressure of high-pressure relief valve (MPa {kg/cm2}) Set pressure of high-pressure cut-off valve (MPa {kg/cm2}) Set pressure of low-pressure relief valve (MPa {kg/cm2})

10-10

A4VG71DA Variable displacement swash plate-type piston pump 0 – 71

43.2 {441} Effective differential pressure 40.2 {410} 2.5 {25}

WA150-5


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

HST PUMP

Operation Flow of power • The HST pump is installed to the coupling which is installed to the engine flywheel. • The power of the engine is transmitted from the flywheel through the coupling to the HST pump. • The HST pump is equipped with forward-reverse shifting solenoid valve (1) and servo cylinder (6). If the operator operates for forward or reverse travel, forward-reverse shifting solenoid valve (1) operates and swash plate (11) in the HST pump slants to reverse the oil flow. • Cylinder block (9) and pistons (10) in it rotate together with drive shaft (12) and the tips of pistons (10) slide on swash plate (11) which does not rotate. The pump has 9 pistons (10) in it.

WA150-5

Flow of oil • As swash plate (11) of the HST pump slants, pistons (10) in contact with its surface reciprocate and work as pumps to suck and discharge the oil in cylinder block (9). • As a result, high-pressure oil flows in a constant direction into the HST motor. • If swash plate (11) slants in the opposite direction, the sucking and discharging directions of the oil are reversed, that is, the oil flows in the opposite direction. While swash plate (11) is in neutral, pistons (10) do not reciprocate, thus they do not discharge any oil. • The strokes of pistons (10) are changed to control the travel speed by increasing or decreasing inclination (angle) of swash plate (11). • If the quantity of the oil in the low-pressure circuit (the return circuit from the motor to the pump) becomes insufficient because of leakage from the HST pump, HST motor, and control valve, the charge pump adds oil through speed-related valve (3) and check valve of high-pressure relief valve (7).

10-11


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

HIGH-PRESSURE RELIEF VALVE

HIGH-PRESSURE RELIEF VALVE

1. 2. 3. 4. 5. 6. 7. 8.

Nut Locknut Poppet spring Check spring Main piston Valve seat Pilot poppet Adjustment screw

10-12

Function • The high-pressure relief valve is installed to the HST pump. If the oil pressure in the high-pressure circuit between the HST pump and HST motor rises higher than the set pressure, the highpressure relief valve drains the oil into the lowpressure circuit. The high-pressure relief valve controls the maximum pressure in the circuit to protect the circuit with this function. • If the quantity of the oil in the circuit becomes insufficient, the high-pressure valve leads oil in from the HST charge pump to prevent cavitation.

WA150-5


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

Operation • Port A is connected to the high-pressure circuit of the HST pump and ports C and D are connected to the low-pressure circuit of the HST pump. The oil fills chamber B through the orifice of main piston (5). Pilot poppet (7) is seated on valve seat (6).

If the oil pressure in port A and chamber B reaches the set pressure of poppet spring (3), pilot poppet (7) opens and the oil in chamber B flows through chamber D to port C, and the oil pressure in chamber B lowers consequently. If the oil pressure in chamber B lowers, a pressure difference is made between port A and chamber B by the orifice of main piston (5). As a result, main piston (5) is pushed open and the oil in port A flows into port C to relieve the abnormal pressure.

The set pressure can be adjusted by increasing or decreasing the tension of poppet spring (3). To adjust the set pressure, remove the nut and loosen the locknut. If the adjustment screw is tightened, the set pressure is heightened. If the former is loosened, the latter is lowered. If the oil pressure in port A lowers below that in port C, check spring (4) pushes back main piston (5) and the oil in port C flows through chamber D into port A so that the quantity of the oil in port A will not become insufficient.

WA150-5

HIGH-PRESSURE RELIEF VALVE

10-13


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

LOW-PRESSURE RELIEF VALVE

LOW-PRESSURE RELIEF VALVE

1. 2. 3. 4.

Locknut Adjustment screw Piston Spring

Operation • Port A is connected to the HST pump charge circuit and port B is connected to the drain circuit. If the oil pressure is below the set pressure, the oil does not flow into port B. • If the pressure in port A reaches the set pressure for some reason, piston (3) opens and the oil in port A flows into port B, and the oil pressure in port A lowers consequently. • The set pressure can be adjusted by increasing or decreasing the tension of spring (4). To adjust the set pressure, loosen locknut (1) and turn adjustment screw (2). If the adjustment screw is tightened, the set pressure is heightened. If the former is loosened, the latter is lowered.

Function • The low-pressure relief valve is installed to the HST pump. If the oil pressure in the low-pressure circuit between the HST pump and HST motor rises higher than the set pressure, the low-pressure relief valve drains the oil into the hydraulic tank. The low-pressure relief valve controls the pressure in the HST pump charge circuit to protect the circuit with this function.

10-14

WA150-5


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

HST CHARGE PUMP

HST CHARGE PUMP

1. 2. 3. 4. 5. 6. 7. 8.

Cover bolt Pump gear Key Coupling Drive shaft Plate Charge pump cover Crescent divider board

Outline • The HST charge pump is built in the HST pump and driven together with the HST pump to supply oil to the HST speed-related valve and low-pressure relief valve of the HST pump. • The HST charge pump sucks in oil from the hydraulic tank.

WA150-5

Specifications Type

Theoretical capacity (cc/rev)

Gear pump (Inscribed type) 19.6

Function • The HST charge pump is connected to drive shaft (5) of the HST pump and rotated by coupling (4). • The HST charge pump has pump gear (2) and crescent divider board (8) in it and sucks and discharges the oil in the direction shown in the above figure.

10-15


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

SPEED-RELATED VALVE (DA VALVE)

SPEED-RELATED VALVE (DA VALVE)

1. 2. 3. 4. 5.

Locknut Adjustment screw Poppet spring Spring seat Pilot poppet

Function • The speed-related valve is installed to the HST pump and used to divide the oil from the HST charge pump into two parts. One part flows through a throttle valve to the forward-reverse shifting solenoid valve of the HST pump and the other part flows to the low-pressure relief valve of the HST pump. Operation • Port A is connected to the HST pump charge circuit. Port D is connected to the low-pressure relief valve circuit. Port C is connected to the forward-reverse shifting solenoid valve circuit. • The oil from the HST charge pump always flow through the throttle valve of pilot poppet (5), chamber B, and port D to the low-pressure relief valve. As the hydraulic pressure from the HST charge pump is applied a differential pressure is generated between port A and chamber B because of the throttle valve of pilot poppet (5). Since this differential pressure moves pilot poppet (5), the oil flows from chamber B through port C to the forward-reverse shifting solenoid valve. • Pilot poppet (5), poppet spring (3), and spring seat (4) are used as a set. To change the set pressure, loosen locknut (1) and turn the adjustment screw (2). If the adjustment screw is tightened, the set pressure is lowered. If the former is loosened, the latter is heightened.

10-16

WA150-5


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

HIGH-PRESSURE CUT-OFF VALVE

HIGH-PRESSURE CUT-OFF VALVE

1. 2. 3. 4. 5. 6. 7. 8.

Adjustment screw Locknut Spring Spool Piston Barrel Shuttle spool Valve seat

Function • The high-pressure cut-off valve is installed to the HST pump. If the oil pressure in the high-pressure circuit between the HST pump and HST motor rises higher than the set pressure, the highpressure cut-off valve drains the oil from the servo cylinder circuit into the hydraulic tank to control the maximum pressure in the HST pump circuit. Operation • Port A is connected to the high-pressure circuit during reverse travel. Port B is connected to the high-pressure circuit during forward travel. Port Pc is connected to the speed-related valve, and port T is connected to the drain circuit. • If the pressure on the port A side rises high for some reason, shuttle spool (7) is pushed down and the circuit on port B side is closed. At the same time, piston (5) is pushed up by the hydraulic pressure on port A side and spring (3) is compressed and spool (4) is also pushed up. Then, ports Pc and T are opened and the hydraulic oil in the speed-related valve circuit flows into the drain port. As a result, the oil pressure in port Pc lowers and the swash plate angle of the HST pump reduces, and consequently the discharge reduces and the abnormal pressure in the HST pump circuit lowers.

WA150-5

10-17


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

HST MOTOR

HST MOTOR a HST: Abbreviation for Hydro Static Transmission

HST motor 1

1. 2. 3. 4. 5.

Drive shaft Piston Cylinder block Port plate EP servo valve

Specifications Model Type Theoretical capacity (cc/rev) Set pressure of high-pressure relief valve (MPa {kg/cm2}) Set pressure of high-pressure cut-off valve (MPa {kg/cm2}) Set pressure of low-pressure relief valve (MPa {kg/cm2})

10-18 (5)

A6VM55EP Variable displacement bent axis type piston motor 0 – 55 43.2 {441} Effective differential pressure 40.2 {410} 2.5 {25}

WA150-5


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

HST MOTOR

HST motor 2

1. 2. 3. 4. 5. 6.

Drive shaft Piston Cylinder block Port plate HA servo valve Forward-reverse shuttle valve

Specifications Model Type Theoretical capacity (cc/rev) Set pressure of high-pressure relief valve (MPa {kg/cm2}) Set pressure of high-pressure cut-off valve (MPa {kg/cm2}) Set pressure of low-pressure relief valve (MPa {kg/cm2})

WA150-5

A6VM55HA Variable displacement bent axis type piston motor 28.5 – 55 43.2 {441} Effective differential pressure 40.2 {410} 2.5 {25}

10-19 (5)


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

Principle • Let's assume that a shaft of a disc is supported and the disc can rotate freely. If force F is applied bias to this disc, it is divided into component force F1 at right angles to the disc and component force F2 in the peripheral direction of the disc. Component force F2 rotates the disc to the right. • If force F', not force F, is applied to the disc, it is divided into component forces F1' and F2' similarly to the above and force F2' rotates the disc to the left

HST MOTOR

Operation • The hydraulic oil sent from the HST pump flows in the inlet port of the HST motor and gives hydraulic pressure to the back side of pistons (2). Accordingly, drive shaft (1) rotates because of inclination of pistons (2) and cylinder block (3). • The oil from the HST pump flows between the forward-reverse shifting solenoid valve and servo cylinder into forward-reverse shuttle valve (6) of the HST motor. The oil from the forward or reverse high-pressure discharge side of the HST motor flows into forward-reverse shuttle valve (6). If a load is applied to the motor connected to servo valve (5) in the HST motor, the oil flows into the servo cylinder of the HST motor because of the pressure difference from forward-reverse shuttle valve (6) side, thus cylinder block (3) is inclined more.

Structure •

There are 7 pistons (2) installed to the disc portion of the drive shaft (1) as if they are spherical joints. They are set in cylinder block (3) at a certain angle to drive shaft (1). As the external load on the HST motor is increased by servo valve (5) and forward-reverse shuttle valve (6), inclination of pistons (2) is increased. As a result, the revolving speed is lowered but the torque is increased.

10-20

WA150-5


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

EP SERVO VALVE

EP SERVO VALVE

1. 2. 3. 4.

Motor 1 solenoid valve EP servo valve Spring Servo cylinder

Function • The EP servo valve is installed to the rear part of HST motor 1 and used to change the displacement of the motor according to the current given to motor 1 solenoid valve (1).

WA150-5

Operation • Suction force F1 of motor 1 solenoid valve (1) and force F2 of spring (3) are applied to EP servo valve (2). • If the current given to motor 1 solenoid valve (1) is little (F1 < F2), EP servo valve (2) leads the hydraulic pressure of the motor high-pressure circuit to the small diameter (S) side of servo cylinder (4) and releases the hydraulic pressure on the large diameter (L) side into the tank (motor housing). As a result, servo cylinder (4) moves toward the min side. • If the current given to motor 1 solenoid valve (1) is large (F1 > F2), EP servo valve (2) leads the hydraulic pressure to the large diameter (L) side. As a result, servo cylinder (4) moves toward the max side because of the area difference between the small diameter (S) side and large diameter (L) side. • The force of spring (3) changes according to the position of servo cylinder (4) (the displacement of the motor). Accordingly, the displacement of the motor is controlled by the current given to motor 1 solenoid valve (1) so that suction force F1 will be balanced with spring force F2.

10-21


STRUCTURE, FUNCTION AND MAINTENANCE STANDARD

HA SERVO VALVE

HA SERVO VALVE

1. Motor 2 solenoid valve 2. HA servo valve 3. Servo cylinder Function • The HA servo valve is installed to the rear part of HST motor 2 and used to control the position of servo cylinder (3) (the displacement of the motor) to meet the motor output to the external load on the motor. The displacement is controlled with the hydraulic pressure in the circuit selected by the forward-reverse shuttle valve.

10-22

Operation • When the load on the machine is small, HA servo valve (2) leads the hydraulic pressure on the side selected by the forward-reverse shuttle valve to the small diameter (S) side of servo cylinder (3) and releases the hydraulic pressure on the large diameter (L) side into the tank (motor housing) to minimize the displacement of the motor. • When a large load is applied to the machine on a uphill, etc., HA servo valve (2) leads the hydraulic pressure to the large diameter (L) side. As a result, servo cylinder (3) moves toward the max side because of the area difference between the small diameter (S) side and large diameter (L) side. At this time, the displacement of the motor becomes largest and the motor generates large torque. • If motor 2 solenoid valve (1) is energized, HA servo valve (2) leads the hydraulic pressure to the large diameter (L) side and the displacement of the motor becomes largest, regardless of the load on the machine.

WA150-5


Thank you very much for your reading. Please Click Here Then Get More Information.

Komatsu wa150 5 wheel loader service repair manual sn:65001 and up  
Komatsu wa150 5 wheel loader service repair manual sn:65001 and up  
Advertisement