2010 YCCI Annual Report

Page 15

Technologies to Unravel Cellular Mechanisms Rimm also heads the tissue microarray division of Yale Pathology Tissue Service, one of the largest collections of tissue microarrays in the country. The microarrays are used for quantitative measurements of protein expression in cells and subcellular compartments. They are also linked to a database that collects clinical information from the Yale Tumor Registry, making them even more valuable to researchers within the cancer center, as well as scientists in other departments conducting preclinical and translational studies. Another effort aimed at improving the access of clinical and translational scientists to technologies essential for their research includes merging Yale’s flow cytometry core with the immune monitoring core that was established with support from the CTSA. The ability to sort cells according to their molecular characteristics has revolutionized clinical and translational studies because analyses can be carried out on virtually any cell that can be placed in a fluid stream. Flow analysis has also become widely used in clinical trials by making it possible to monitor the effects of immune modulators and markers of clinical response. In addition to his studies on rare variants in MS, David Hafler, MD, professor of neurology and immunobiology, has recently developed a robotic platform to improve the throughput and reproducibility of assays developed by Yale investigators working on human studies. The platform will perform standard cell surface staining as well as activation

One measure of how the Yale CTSA is moving science forward is the fact that 107 studies linked to CTSA support have been published in leading peer-reviewed journals since receiving the award in 2007. Of these, 13 have been published since July 2010 in Cell (1), Journal of the American Medical Association (1), Proceedings of the National Academy of Sciences (5), Nature (3), Science (2), and Nature Medicine (1).

studies to analyze intracellular cytokine production and signaling molecules. The new technology will increase both the accuracy and capacity of these studies by processing thousands of samples in a uniform manner. While the flow core has historically been used for research in mice, the immune core is intended for research involving humans and is equipped for the demands involved in handling human cells. Consolidation of the two cores will provide an administrative link for all of Yale’s flow cytometry services and give investigators access to a full range of instrumentation and expertise. The new combined core is expected to serve as many as 40 interacting research groups and will function as the hub of clinical and translational immunology at Yale. “Our hope is to build a bridge from basic science to the clinic,” said YCCI director Robert Sherwin, MD. With the support of the CTSA, Yale will continue to invest in stateof–the-art technologies and foster collaboration among basic scientists and clinical investigators to develop promising new treatments for disease. ycci.yale.edu

13


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.