Mainstreaming Building Energy Efficiency Codes in Developing Countries

Page 83

Mainstreaming Building Energy Efficiency Codes in Developing Countries

51

Table 4.6. EPBD Requirements to Be Implemented in Each EU Member State A common methodology for integrated minimum standards to • Integrate insulation, heating, cooling, ventilation, lighting, renewable energy installations, passive systems, CHP, District Heating/Cooling, orientation of the building • Give flexibility to designers to meet energy reduction standards in the most cost-effective way • Be expressed in simple energy indicators • Be adopted by member states for different categories of buildings taking into account climatic differences and CEN standards • To be reviewed regularly (<5 years) to reflect technical progress The certification schemes: • Member states to ensure that an energy performance certificate is made available to building occupiers when a building is constructed, sold or rented out • Certificates to be valid for no more than 10 years • Certificates to be accompanied by information on how to improve the energy performance of the building in a costeffective way • Certificates to be displayed in public buildings of over 1000 m2 • Possible extension or phasing-in of certification schemes for a maximum of three years if there is a lack of qualified and/or accredited experts Inspection of boilers, heating systems, and AC installations: • Member states to introduce requirements for regular inspections of boilers (option A) • Member states to ensure provision of advice to users that gives the same results as regular inspections (Option B; to be proven by member states) • Member states to establish regular inspections of air conditioning systems with output of more than 12 kW • Possible extension or phasing in of inspection schemes for a maximum of three years if there is a lack of qualified and/or accredited experts Source: Summary of http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:001:0065:0071: EN:PDF.

By 2008, 22 member states declared that they were fully compliant with all EPBD requirements. Some member states delayed full implementation until 2009, citing the lack of accredited experts to produce energy certificates or carry out the inspection of boilers and air conditioning systems. In addition to the lack of technical skills and expertise, other issues that slowed down the implementation of the EPBD were low public acceptance and awareness, and perceived high costs.9 There is also “a lack of proper national administration, and it has taken more time than anticipated to revise national building regulations, set up the certification schemes and train experts…. Governments want to keep costs down, supporting systems were not in place, experts need guidance and there are not enough incentives to spur stakeholders to act. Last but not least, there is no monitoring of the impact of the EPBD on actual energy savings.”10 Revision of the EPBD Experts and policy makers realized soon that the EU goal of reducing energy use in buildings by 30 percent by 2020 could not be reached with the 2002 EPBD. For achieving energy savings, existing buildings in the EU are far more important than new buildings. The original EPBD requirements extended only to existing buildings > 1000 m², which account for 29 percent of the EU building sector.11 The technical potential to reduce CO2 emissions in those larger buildings in EU-15 countries amounts to 82 million tons per year, whereas for all existing buildings the potential would be 398 million tons annually.12 In addition, more aggressive targets for energy performance of new buildings were deemed necessary.


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.