Mainstreaming Building Energy Efficiency Codes in Developing Countries

Page 47

Mainstreaming Building Energy Efficiency Codes in Developing Countries

15

is a good example of how low-income countries, by committing to energy efficiency early in their development process and through persistence, can make large progress in addressing the challenges over time as their economies grow stronger (see Chapters 5 and 6).

Notes 1 Different countries may have different definition for the categories of buildings for statistical purposes and sometimes differently for application of building codes. In this report, the categories follow the general convention of energy statistics (that is, owner- or renter-occupied residences are residential buildings and buildings that house (non-industrial) commercial and public entities and activities are commercial buildings). Energy data are from Energy Statistics, International Energy Agency, http://www.iea.org/stats. 2 Actual level of energy services delivered in low-income countries is further reduced because of generally lower level of energy efficiency in building applications, compared with high-income countries. 3 However, note that the range is broad even within the developed countries, and the energy efficiency with which electricity and other energy is provided and used varies greatly. 4 Eurostat http://nui.epp.eurostat.ec.europa.eu/nui/show.do. 5 Tsinghua University Research Center for Energy Efficiency in Buildings (2008). 6 Much of the air conditioning energy consumption could be avoided if the buildings used more thoughtful design and traditional construction methods (for example, window orientation, high thermal mass, recessed windows, overhangs over windows). Consequently, the increase in the use of electricity for air conditioning, for example in the United States, did not reflect an improvement in the standard of living. Some of the increase was to compensate for poor design that was worse than that of previous generations. See also figure 4.4 and related discussion. 7 de la Rue du Can et al. (2009). 8 Zhou/McNeil/Levine (2009). 9 Zhou/Lin (2008). 10 United Nations Population Division, World Urbanization Prospects: The 2007 Revision, http://esa.un.org/unup/index.asp. 11 World Energy Outlook 2009, International Energy Agency, p. 251. 12 Levine et al. (2007). 13 This section draws from the materials of Levine et al. (2007). 14 http://www.goodenergies.com/news/-pdfs/Web site Presentation.pdf. See also the discussion about the mixed record of green buildings in terms of energy efficiency at the end of chapter 2. 15 http://www.energystar.gov/index.cfm?fuseaction=find_a_product. 16 Designers may be concerned that they might devote time to researching a technology only to have the time be wasted when the developer does not want to include the energy efficiency measure because they are unconvinced of its benefits. Designers are rarely funded to perform annual energy analyses to support informed recommendations on energy efficiency. It is too easy for designers to simply work off the specifications from the previous project and too easy for contractors to construct buildings in the manner that they have used in the past. Building energy efficiency codes can help address this problem by specifying certain measures in the prescriptive compliance options in the code. Since everyone will need to comply, designers then will not worry about whether they are out in front alone. Also, when measures are included in the prescriptive compliance options in the code, then designers do not need to develop a justification to convince a developer to include certain energy efficiency measures. The designer can simply tell the developer that it is required.


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.