Combined-book

Page 33

Jun Yang; Xuefeng Chu North Dakota State University Department of Civil Engineering Ph.D. Candidate; Assistant Professor jun.yang.2@ndsu.edu Poster Title: Modeling of Microtopography-Controlled Hydrologic Connectivity and Overland Flow Dynamics Abstract: Land surfaces are characterized by depressions, which break spatial continuity of various hydrologic features/properties. The varying connectivity of topographic surfaces and the threshold characteristics of a series of hydrologic and geomorphologic processes result in localized and independent hydrologic mass balance. This study centers on modeling the formation and evolution of the puddle-to-puddle (P2P) dynamic overland flow processes and further examining the effects of surface microtopography on hydrologic connectivity. An instantaneous-profile laser scanner is utilized to acquire high-resolution DEMs of various surfaces. A conceptual P2P overland flow model is developed to simulate the P2P processes and characterize hydrologic connectivity for microtopography-controlled overland flow systems. It is found that the number and normalized average of connected areas follow a similar nonlinear decreasing trend for small scale surfaces. Connectivity properties vary with different stages of the P2P overland flow dynamics, depending on the spatial patterns of puddles.


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.