EN Physics: Laboratory Experiments

Page 167

6 Light and Optics 6.3 Diffraction and Interference

Interference of light

P2220100

Geometrical arrangement, using the Fresnel mirror.

Principle

Laser, He-Ne, 1.0 mW, 230 V AC

By dividing up the wave-front of a beam of light at the Fresnel mirror and the Fresnel biprism, interference is produced. The wavelength is determined from the interference patterns. Tasks Determination of the wavelength of light by interference 1. with Fresnel mirror, 2. with Fresnel biprism. What you can learn about ▪ ▪ ▪ ▪ ▪

Wavelength Phase Fresnel biprism Fresnel mirror Virtual light source

Function and Applications Linearly polarised light source, very short design. Benefits

Main articles Laser, He-Ne, 1.0 mW, 230 V AC Fresnel mirror Optical profile-bench, l 1000mm Fresnel biprism Lens, mounted, f +300 mm,achrom. Prism table with holder Swinging arm Slide mount for optical bench, h = 80 mm Lens holder Slide mount for optical bench, h = 30 mm

08181-93 08560-00 08282-00 08556-00 08025-01 08254-00 08256-00 08286-02 08012-00 08286-01

1 1 1 1 1 1 1 2 2 2

▪ Welded glass tube assures a very long lifetime > 18 000 operating hours. ▪ Anodised aluminium casing with integrated mains power supply. ▪ Fixed mains connecting cable 140 cm. Equipment and technical data ▪ ▪ ▪ ▪ ▪

Wavelength 632.8 nm, Optical output power 1.0 mW Beam diameter 0.5 mm, Beam divergence < 2 mrad. Minimum polarisation 500:1, Max drift over 8 hours ± 2.5% Oscillating mode TEM00, Lifetime > 18000 h Power requirements 35 VA, Connecting voltage 230 V, 50.60 Hz.

08181-93

PHYWE Systeme GmbH & Co. KG · www.phywe.com 165


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.