Mystery of Genome

Page 138

124

The Mystery of the Genome

is defining our first beneficial mutation. By itself, no particular nucleotide (A,T,C, or G) has more value than any other - just as no letter in the alphabet has any particular meaning outside of the context of other letters. So selection for any single nucleotide can never occur, except in the context of all the surrounding nucleotides (and in fact within the context of the whole genome). Like changing a letter within a word or chapter, the change can only be evaluated in the context of all the surrounding letters. We cannot define any nucleotide as good or bad except in relation to its neighbors and their shared functionality. This brings us to an excellent example of the principle of “irreducible complexity”. In fact, it is irreducible complexity at its most fundamental level. We immediately find we have a paradox. To create a new function, we will need to select for our first beneficial mutation, but we can only define that new nucleotide’s value in relation to its neighbors. Yet to create any new function, we are going to have to be changing most of those neighbors also! We create a circular path for ourselves - we will keep destroying the “context” we are trying to build upon. This problem of the fundamental inter-relationship of nucleotides is called epistasis. True epistasis is essentially infinitely complex, and virtually impossible to analyze, which is why geneticists have always conveniently ignored it.

Such bewildering complexity is

exactly why language (including genetic language) can never be the product of chance, but requires intelligent design. The genome is literally a book, written literally in a language, and short sequences are literally sentences.

Having random letters fall

into place to make a single meaningful sentence, by accident, is numerically not feasible. The same is true for any functional strings of nucleotides. If there are more than several dozen nucleotides in a functional sequence, we know that realistically they will never just “fall into place”. This has been mathematically demonstrated


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.