Energy and the Earth Global Research 2009

Page 14

Study of Algae Chemistry and Geochemistry Discovering ways to make algal fuel more affordable

Phots: Kirsten Boyer

Biofuel Potential M

atthew Posewitz, an assistant professor in the Department of Chemistry and Geochemistry, is examining how microorganisms are able to convert sunlight and water into fuel. By studying microorganisms such as algae, researchers hope to find viable ways to produce biodiesel. “We study the ability of algae to use photosynthesis to produce a variety of renewable energy carriers including hydrogen, alcohols and diesel fuel surrogates,” Posewitz said. Algae lack leaves, roots and organs and the vascular structure found in plants. Algal fuels can be produced using wastewater or seawater and are biodegradable. U.S. Department of Energy studies found algal fuel to be too expensive in the 1990s, but with increasing petroleum costs and decreasing algae production costs, it’s now a hot topic in the biofuel industry. Australian researchers recently concluded that with additional optimization, some saltwater algae might be able to produce biodiesel for less than what it costs to produce petroleum diesel. Unlike corn, algae can be grown year-round in warm climates on relatively small amounts of land. In its April 2009 issue, Biodiesel Magazine quoted Houston-based biofuels analyst Will Thurmond, predicting U.S. biodiesel production from commercial-scale algae as early as 2012. Thurmond believes it will be a mainstream commodity by 2020. Although Posewitz said making commercially competitive hydrocarbons from algae is a matter of tweaking and optimizing what researchers already are doing, and overall he’s optimistic about the potential of biofuels, he cautions we still have a long way to go to make algal fuel cost-competitive. “The capacity (for biofuels) is definitely there. It’s a feasible thing that we could replace substantial amounts of our fuel portfolio, potentially all of it,” Posewitz said. Posewitz and his research team have been working on biofuel production for more than a decade, and now he collaborates with Mines chemistry and geochemistry faculty Kim Williams, Kent Voorhees and Ryan Richards; environmental science and engineering professor John Spear; and physics professor Jeff Squier. “Our research is focused at the moment on making fundamental 26

advances in our understanding of the metabolic underpinnings of biofuel production. As new discoveries are leveraged in biofuels applications, all of society stands to benefit,” Posewitz said. Posewitz also is a visiting research scientist at the National Renewable Energy Laboratory (NREL). NREL researchers work with Posewitz and his team, which collaborates with scientists throughout the U.S. and abroad. They have extensive collaborations with researchers at the University of Colorado, Stanford University, Princeton University, Westminster College, the University of Hawaii and Montana State University. “The expertise that these groups bring to the table has dramatically facilitated our progress on a number of projects. By engaging and working with the top laboratories in the country, we are able to move our projects from the conceptual stages to having significant data in our hands much more rapidly. This area has so much interest at the moment that it is really important to exchange ideas with others and address the fundamental bottlenecks in this field, which include optimizing photosynthetic conversion efficiencies, controlling metabolic flux into the desired pathways and extracting the targeted biomolecules from the algae,” Posewitz said. Mines undergraduate and graduate students also are participating in the research and gaining valuable experience. Funding for the research comes through a variety of sources including ConocoPhillips, the U.S. Department of Energy, the Air Force Office of Scientific Research and the Colorado Center for Biofuels and Biorefining. Over the last five years, Posewitz has received more than $1.5 million in research funding. Posewitz has published more than 20 papers, including two that were acknowledged by the Faculty of 1,000 (a web site for scientists providing rankings and commentary on current research) as being among the highest impact papers in their respective fields.

Colorado School of Mines

Energy Professor Matthew Posewitz

and the

Earth

27


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.