IU Research & Creative Activity Magazine, V31, N2

Page 12

high-tech ice

Until recently, polar science — the study of ice sheets and their complex interrelationship with the larger environment — was a scientific backwater that attracted little outside attention. Polar scientists work in some of the most isolated and extreme places the planet has to offer, making it difficult to gather and process the kind of massive data that allow earthquake scientists, for example, to model and predict seismic activity. The prospect of rising sea levels and the potentially catastrophic consequences has changed the profile of polar science. Now, polar science is front and center in the international scientific community’s efforts to understand climate change. Still, polar scientists don’t have the banks of research data that might allow them to interpret recent changes, predict future

Reading GLACIERS in real time When scientists look at glaciers, they don’t just see ice. The ice — which is often more than three kilometers thick — rests on a foundation of bedrock, and scientists believe the interaction between the ice and the bedrock is the key to understanding the behavior of ice sheets. The bedrock is riven by deep channels — the movement and melting potential of glaciers is measured by the movement of ice within those channels. Because the bedrock and its channels aren’t visible under all that ice, ice scientists use radar technology originally developed at the University of Kansas to map glacier flow. Some of the radar sensors are pulled slowly over the surface of the glacier behind small snow tractors. Other radar sensors are flown over the glacier in twin-engine planes. Scientists also place remote sensors at specific spots on the glacier to take longer range temperature readings. The difficulty of gathering large amounts of data in a hostile climate has always been the sticking point for polar scientists. Because of harsh conditions, they’ve never been able to look at their data in “real time” or have the opportunity

Research & Creative Activity | S P R I N G 2 0 0 9

Photo by Matt Link

behavior, and help colleagues in other fields figure out what role ice sheets play in climate change. But in January 2007, Geoffrey Fox met Linda Hayden and the Polar Grid project began to take shape. Two years later, Polar Grid is helping polar scientists use radar mapping to collect and analyze large quantities of data while the researchers are actually on the ice. The project also links scientists, students, and universities in a burgeoning network of informationsharing that is vital in helping scientists grapple with climate change. “The whole field of ice science is not sophisticated in the way that earthquake science is,” Fox says. “Earthquakes have been thoroughly studied, while the glaciers have been chugging away. We decided to look at developing the data-gathering ability to study them thoroughly.” Fox, director of the Community Grids Lab within Indiana University’s Pervasive Technology Institute and an IU professor of computer science and informatics, has long been interested in harnessing the data-gathering and data-crunching capacities of computers to solve practical scientific problems. He is also deeply committed to using cyberinfrastructure to link larger research universities such as IU to smaller schools, especially those serving minority students, to share information and computing power. Hayden, whose background is in mathematics and computer science, is the founder and director of the Center of Excellence in Remote Sensing Education and Research at tiny Elizabeth City State University, a historically black college in North Carolina. She was drawn to polar science after meeting ice scientist Prasad Gogineni, who directs the Center for the Remote Sensing of Ice Sheets at the University of Kansas.

9


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.