2012 Johns Hopkins Nano-Bio Magazine

Page 15

Research

Tackling the Brain’s Barrier By Mary Spiro

Much like a sentry at a border crossing, the network of tiny blood vessels surrounding the brain allows only a few important molecules in or out. Of course, there is good reason for this. The brain controls the senses, motor skills, breathing, and heart rate, as well as being the seat of thoughts and emotional experiences. Just as our tough plated skull offers a physical armor for the brain, the blood-brain barrier shields our brain from potentially harmful substances at the molecular level. “Despite its powerful role in controlling bodily functions, the brain is extremely sensitive to chemical changes in the environment,” said Peter Searson, director of Johns Hopkins Institute for NanoBioTechnology (INBT) and lead on the Blood Brain Barrier Working Group (BBBWG). The BBBWG is a collaboration between INBT and the Brain Science Institute at the Johns Hopkins School of Medicine. Oxygen, sugars (such as glucose), and amino acids used to build proteins can enter the brain from the bloodstream with no trouble, while waste products, such as carbon dioxide, exit the brain just as easily. But for most everything else, there’s just no getting past this specialized hurdle. In fact, the blood-brain barrier protects the brain so effectively that it also prevents helpful drugs and therapeutic agents from reaching diseased areas of the brain. And because scientists know very little about the blood-brain barrier, discovering ways to overcome the blockade has been a challenge. “We still don’t know very much about the structure and function of the blood-brain barrier,” Searson said. “Because we don’t know how the blood-brain barrier works, it presents a critical roadblock in developing treatment for diseases of the central nervous system, including Amyotrophic Lateral Sclerosis (Lou Gehrig’s disease), Alzheimer’s, autism, brain cancer, Huntington’s disease, meningitis, Multiple Sclerosis (MS), neuroAIDS, Parkinson’s, and stroke. Treatable brain disorders are limited to depression, schizophrenia, chronic pain, and epilepsy. If we had a better understanding of how the blood-brain barrier

worked, we would be in a better position to develop treatments for many diseases of the brain,” Searson said. But he added, even with a better understanding of the membrane, humans cannot be used to study new therapies. One way the BBBWG plans to surmount this roadblock is by creating an artificially engineered (or simulated) model of the blood-brain barrier. An engineered artificial blood-brain barrier would allow researchers to conduct studies that simulate trauma to or diseases of the blood-brain barrier, such as stroke, infection, or cancer. “It would also give us insight into understanding the role of the blood-brain barrier in aging,” said Searson. Drug discovery and the development of new therapies for central nervous system diseases would be easier with an artificial blood-brain barrier and certainly safer than animal or human testing. An an artificial blood-brain barrier could be used as a platform to screen out drugs used to treat maladies outside the brain, but which have unwanted side effects, such as drowsiness. The creation of such a platform will require the skills of a multidisciplinary team that includes engineers, physicists, neuroscientists and clinicians working together to bring new ideas and new perspectives, Searson added, and will build on recent advances in stem cell engineering and the development of new biomaterials. Current members of the BBBWG include, for example, representatives from the departments of neuroscience, anesthesiology, psychiatry, pathology and pharmacology from the JohnsHopkins School of Medicine and from the departments of mechanical engineering, chemical and biomolecular engineering and materials science from the Whiting School of Engineering. One member of that multidisciplinary team is Lew Romer, MD, associate professor of Anesthesiology and Critical Care Medicine, Cell Biology, Biomedical Engineering, and Pediatrics at the Center for Cell Dynamics at the Johns Hopkins School of Medicine. See Brain on page 32

Spring 2012 13


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.