Energy [R]evolution EU

Page 29

© GP

image LE NORDAIS WINDMILL PARK, ONE OF THE MOST IMPORTANT IN AMERICA, LOCATED ON THE GASPÈ PENINSULA IN CAP-CHAT, QUEBEC, CANADA.

2

On 30 May 2011, the German environment minister, Norbert Röttgen, announced the Germany would close its eight oldest nuclear plants and phase out the remaining nine reactors by 2022. The plan is to replace most of the generating capacity of these nine reactors with renewables. The experience so far gives a real example of the steps needed for a global Energy [R]evolution at a national scale.

2.4.3 shortfall from first round of closures

The oldest eight nuclear reactors were closed immediately and based on figures available it looks like the ‘shortfall’ will be covered by a mix of lower demand, increasing renewable energy supply, and a small part by fossil-fuelled power.

The German government expects renewables to generate 35% of German electricity by 2020.14 The German Federal Environment Agency believes that the phase out would be technically feasible from 2017, requiring only 5 GW of additional combined heatand-power or combined cycle gas plant (other than those already under construction) to meet peak time demand.15

In the first half of 2011, Germany was a net exporter of electricity (Figure 2.9), exporting 29 billion kWh and importing 24 kWh.19 Complete figures for electricity imports and exports in the second half of 2011 are not yet available, once nuclear reactors were decommissioned, however it is known that Germany exported electricity to France during a cold spell in February 2012.20

2.4.2 carbon dioxide emissions trends

The German energy ambassador, Dr. Georg Maue, reported to a meeting in the British Parliament in February 2012 that Germany was still on track to meet its CO2 reduction targets of 40% by 2020 and 80% by 2050 from 1990 levels. Figures for Germany’s 2011 greenhouse gas emissions were not available for this report, although the small growth in use of lignite fuels is likely to have increased emissions in the short term. However, the decision to phase out nuclear energy has renewed the political pressure to deliver a secure climate-friendly energy policy and ensure Germany still meets its greenhouse targets. The Energiewende (‘energy transition’) measures include € 200 billion investment in renewable energy over the next decade, a major push on energy efficiency and an accelerated roll out of infrastructure to support the transition.16 Germany has also become an advocate for renewables at the European level.17 In the longer-term, by deploying a large amount of renewable capability Germany should be able to continue reducing its emissions at this accelerated rate and its improved industrial production should make it more viable for other countries to deliver greater and faster emissions reductions.

Inside Germany, the demand for energy is falling.21 Between 2010 and 2011 energy demand dropped by 5%, because the mild weather reduced demand for gas heating. While the British government is planning for electricity demand in the UK to double by 2050, the German government expects a cut of 25% from 2008 levels.22 Total energy demand is expected to halve over the same time period. 2.4.4 the renewable energy sector in germany

Germany has successfully increased the share of renewable energy constantly over the last twenty years (see Figures 2.6 and 2.7), and the sector was employing over 350,000 employees by the end of 2011. The back bone of this development has been the Renewable Energy Act (Erneuerbare Energien Gesetz – EEG); a feed-in law which guarantees a fixed tariff per kWh for 20 years. The tariffs are different for each technology and between smaller and larger, to reflect their market penetration rates.

references 14 15 16 17 18 19 20 21 22

HTTP://WWW.UMWELTDATEN.DE/PUBLIKATIONEN/FPDF-L/4147.PDF HTTP://WWW.UMWELTDATEN.DE/PUBLIKATIONEN/FPDF-L/4147.PDF HTTP://WWW.ERNEUERBARE-ENERGIEN.DE/INHALT/47872/3860/ HTTP://WWW.ERNEUERBARE-ENERGIEN.DE/INHALT/48192/3860/ THE GERMAN ASSOCIATION OF ENERGY AND WATER INDUSTRIES (BDEW), 16 DECEMBER 2011. HTTP://WWW.BDEW.DE/INTERNET.NSF/ID/EN_?OPEN&CCM=900010020010 HTTP://WWW.BDEW.DE/INTERNET.NSF/ID/8EF9E5927BDAAE28C12579260029ED3B/$FILE/110912% 20RICHTIGSTELLUNG%20IMPORT-EXPORT-ZAHLEN_ENGLISCH.PDF HTTP://WWW.REUTERS.COM/ARTICLE/2012/02/14/EUROPE-POWER-SUPPLY-IDUSL5E8DD87020120214 HTTP://WWW.AG-ENERGIEBILANZEN.DE/COMPONENTEN/DOWNLOAD.PHP?FILEDATA=1329148695.PDF& FILENAME=AGEB_PRESSEDIENST_09_2011EN.PDF&MIMETYPE=APPLICATION/PDF HTTP://WWW.BMU.DE/FILES/ENGLISH/PDF/APPLICATION/PDF/ENERGIEKONZEPT_BUNDESREGIERUNG_EN.PDF (PAGE 5)

29

CASE STUDIES

2.4.1 target and method

In 2011 only 18% of the country’s energy generation came from nuclear.18 In the previous year, nuclear energy’s contribution had already fallen from 22% to 18%, a shortfall covered mostly by renewable electricity which increased from 16% to 20% in the same period, while use of lignite (a greenhouse-intensive fossil fuel) increased from 23% to 25%.

the energy [r]evolution concept |

2.4 case study: a year after the german nuclear phase out


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.