Cyril Caliot

Page 1

Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Towards the Future of CSP PROcesses, Materials and Solar Energy PROMES‐CNRS Laboratory Cyril Caliot, Gilles Flamant

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

1


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Content 1. PROMES Laboratory 1. Introduction 2. Mission of PROMES 3. PROMES Main Facilities

Nov. 11th 2010 C. Caliot, G. Flamant

2. Central Receiver Systems 1. Basic Principles 2. Central Receiver Systems 3. Receiver Technologies

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

2


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

PROMES locations

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

3


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

PROMES‐Overview CNRS Institute for Engineering and Systems Sciences (INSIS)

• Two locations: Perpignan and Odeillo • About 120 people, permanent staff: 70 • Original equipments: Solar Furnaces (from 1.5 kW to 1 MW) • Member of the European Alliance on solar concentrating systems « SolLab » • « European Infrastructure » in the FP7 of the EC: « SFERA Project » Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

4


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

MISSION of PROMES To develop Science and Technology related to solar energy applications, mainly concentrated solar energy, in the field of: – Thermal conversion: building heating and cooling, power and hydrogen production – Photovoltaic conversion: new PV material processing, concentrated PV (CPV)

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

5


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

PROMES Main Facilities 13 Solar Facilities

{

• 12 Solar Furnaces (two reflections)

One (1) 1000 kW One (1) 6.0 kW Ten (10) 2.0 et 1.5 kW

• 1 Dish 50 kW (one reflection) P = 1000 kW 63 Heliostats, Parabola 53x40m, Concentration ~ 10 000

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

6


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

PROMES Main Facilities Small Solar Furnaces 6 kW, 2 kW and 1.5 kW

P=6kW Spherical mirrors D= 4m, S=12.5m² f= 3.75m, d=5cm Concentration ~ 6 000 Nov. 11th 2010 C. Caliot, G. Flamant

P=2 & 1.5kW Single mirror parabola 6 Units: D=2m, f=.85m, d=0.5-1cm 4 Units: D=1.5m, f= .65m, d=0.5-1cm Concentration ~ 17 000

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

7


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

PROMES Main Facilities THEMIS tower and heliostat field

107 heliostats 53 m2, 5 MWth

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

8


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Example of R&D Actions Concentrated solar energy Dish‐Stirling performance evaluation (10 kWe)

Hydrogen production by NG cracking, (European Project) and water splitting

Development of a solar‐gas turbine demonstrator (Mini‐PEGASE 350kWe, PEGASE 1.5MWe) Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

9


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Example of R&D Actions Concentrated solar energy Testing of CPV high efficiency cells

Thermal heat storage 0,200 0,180 0,160

Design and evaluation of CSP facilities

LEC [€/kWh]

0,140 0,120 0,100 0,080 7 €-cts/kWh

0,060 0,040 0,020

Nov. 11th 2010 C. Caliot, G. Flamant

0,000 « Towards the Future of CSP » 100 Israel‐France Conference on Renewable Energy

LEC (FCR=0,11, DNI =2000 kWh/m²a) LEC (FCR=0,11, DNI =2350kWh/m²a) LEC (FCR=0,11, DNI =2700 kWh/m²a)

1000

5000 MW

10000

installed capacity [MW]

100000

10


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Example of R&D Actions Low temperature solar energy Solar cooling (adsorption processes)

Thin film processing (PV coating)

Solar detoxification Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

11


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Content 1. PROMES Laboratory 1. Introduction 2. Mission of PROMES 3. PROMES Main Facilities

Nov. 11th 2010 C. Caliot, G. Flamant

2. Central Receiver Systems 1. Basic Principles 2. Central Receiver Systems 3. Receiver Technologies

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

12


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Components Working Fluid

Solar Portion

Nov. 11th 2010 C. Caliot, G. Flamant

Heat Storage

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

Conventional Power Block

13


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Power Block To transform thermal energy in work, thermodynamical cycles are used.

1. 2. 3.

Rankine Cycle (Steam turbine), 300<T<600°C, 36<η<40% Brayton Cycle (Gas turbine), T>800°C, 46<η<49% Combined Cycle, T>800°C, 55<η<60%

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

14


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Power Block To transform thermal energy in work, thermodynamical cycles are used. Steam

1. 2. 3.

Rankine Cycle (Steam turbine), 300<T<600°C, 36<η<40% Brayton Cycle (Gas turbine), T>800°C, 46<η<49% Combined Cycle, T>800°C, 55<η<60%

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

14


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Power Block To transform thermal energy in work, thermodynamical Compressor Gas Turbine cycles are used. Steam

Pressurised Receiver

1. 2. 3.

Combustion Chamber

Rankine Cycle (Steam turbine), 300<T<600°C, 36<η<40% Brayton Cycle (Gas turbine), T>800°C, 46<η<49% Combined Cycle, T>800°C, 55<η<60%

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

14


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Power Block To transform thermal energy in work, thermodynamical Compressor Gas Turbine cycles are used. Steam

Pressurised Receiver

1. 2. 3.

Combustion Chamber Steam Turbine

Rankine Cycle (Steam turbine), 300<T<600°C, 36<η<40% Brayton Cycle (Gas turbine), T>800°C, 46<η<49% Combined Cycle, T>800°C, 55<η<60%

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

14


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Hybrid Solar Gas Turbine and Combined Cycle

Cycle / engine

Solar‐to‐electricity conversion efficiency

Gas Turbine only

15%

Recuperated Gas Turbine or Classical Steam Cycle

20%

Combined Cycle (GT + bottom Steam Cycle)

30%

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

15


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Energy Cascade and Investment

PS10 Subsystems (Saturated Steam, Rankine Cycle,

η=31%, 40b @250°C) Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

16


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Expected Gains • Cost reduction of the reflecting surface and drive mechanism • High efficiency receiver • Compact system • High efficiency cycle (Combined Cycle)

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

17


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Expected Gains • Cost reduction of the reflecting surface and drive mechanism • High efficiency receiver • Compact system

Radiation Losses Working Fluid T>800°C

• High efficiency cycle (Combined Cycle)

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

17


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Working Fluids

• Molten Salts T < 600°C e.g.: Hitec (NaNO3 – KNO3 ‐ KNO2) • Water/Steam T ~ 600°C High Pressure (> 60 b) • Air at p =1 atm T > 600°C • Pressurised Air T > 800°C

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

18


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Receivers • Absorbing Surface – Solar Flux ~ 200kW/m²

Nov. 11th 2010 C. Caliot, G. Flamant

• Volumetric Receiver – Solar Flux ~ 1000kW/m²

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

19


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Central Receiver Systems (CRS) • • • • • • • • •

Solar One (1978‐1985) Crimea (1978‐1985) CESA 1 (1983) Thémis (1982‐1986) Solar Two (1997‐2000) PS10 (2007) PS20 (2009) Consolar (1995‐1999) …

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

20


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Central Receiver Systems (CRS) • • • • • • • • •

Solar One (1978‐1985) Crimea (1978‐1985) CESA 1 (1983) Thémis (1982‐1986) Solar Two (1997‐2000) PS10 (2007) PS20 (2009) Consolar (1995‐1999) …

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

20


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Central Receiver Systems (CRS) • • • • • • • • •

Solar One (1978‐1985) Crimea (1978‐1985) CESA 1 (1983) Thémis (1982‐1986) Solar Two (1997‐2000) PS10 (2007) PS20 (2009) Consolar (1995‐1999) …

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

Crimea (1978-1985) CRS 5 MW Saturated Steam URSS

20


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Central Receiver Systems (CRS) • • • • • • • • •

Solar One (1978‐1985) Crimea (1978‐1985) CESA 1 (1983) Thémis (1982‐1986) Solar Two (1997‐2000) PS10 (2007) PS20 (2009) Consolar (1995‐1999) …

Nov. 11th 2010 C. Caliot, G. Flamant

Crimea (1978-1985) CRS 5 MW Saturated Steam URSS

CRS (1981-) PSA, Almeria 2.7MWt CESA 1 (1983-) PSA, Almeria 7MWt

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

20


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Central Receiver Systems (CRS) • • • • • • • • •

Solar One (1978‐1985) Crimea (1978‐1985) CESA 1 (1983) Thémis (1982‐1986) Solar Two (1997‐2000) PS10 (2007) PS20 (2009) Consolar (1995‐1999) …

Nov. 11th 2010 C. Caliot, G. Flamant

Thémis (1982-1986) Molten Salts, 2.5MWe

Crimea (1978-1985) CRS 5 MW Saturated Steam URSS

CRS (1981-) PSA, Almeria 2.7MWt

CESA 1 (1983-) PSA, Almeria 7MWt

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

20


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Central Receiver Systems (CRS) • • • • • • • • •

Solar One (1978‐1985) Crimea (1978‐1985) CESA 1 (1983) Thémis (1982‐1986) Solar Two (1997‐2000) PS10 (2007) PS20 (2009) Consolar (1995‐1999) …

Nov. 11th 2010 C. Caliot, G. Flamant

Thémis (1982-1986)

Crimea (1978-1985) CRS 5 MW Saturated Steam URSS

Molten Salts, 2.5MWe

CRS (1981-) PSA, Almeria 2.7MWt

Solar Two, USA (1997-2000) CESA Molten 1 (1983-) Salts - 12,4 MWe PSA, Almeria 7MWt

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

20


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Central Receiver Systems (CRS) • • • • • • • • •

Solar One (1978‐1985) Crimea (1978‐1985) CESA 1 (1983) Thémis (1982‐1986) Solar Two (1997‐2000) PS10 (2007) PS20 (2009) Consolar (1995‐1999) …

Nov. 11th 2010 C. Caliot, G. Flamant

Thémis (1982-1986)

Crimea (1978-1985) CRS 5 MW Saturated Steam URSS

Molten Salts, 2.5MWe

CRS (1981-) PSA, Almeria 2.7MWt

Solar Two, USA (1997-2000) CESA Molten 1 (1983-) Salts - 12,4 MWe PSA, Almeria 7MWt

Abengoa Solar PS10 11MW , PS20 20MW Saturated Steam

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

20


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Central Receiver Systems (CRS) • • • • • • • • •

Solar One (1978‐1985) Crimea (1978‐1985) CESA 1 (1983) Thémis (1982‐1986) Solar Two (1997‐2000) PS10 (2007) PS20 (2009) Consolar (1995‐1999) …

Nov. 11th 2010 C. Caliot, G. Flamant

Weizmann Beam Down Solar Tower Thémis (1982-1986)

Crimea (1978-1985) CRS 5 MW Saturated Steam URSS

Molten Salts, 2.5MWe

CRS (1981-) PSA, Almeria 2.7MWt

Solar Two, USA (1997-2000) CESA Molten 1 (1983-) Salts - 12,4 MWe PSA, Almeria 7MWt

Abengoa Solar PS10 11MW , PS20 20MW Saturated Steam

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

20


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Pressurized Air Solar Receiver • • • •

Ceramic Dome (1978, MIT, Air@ 4b, 980°C, SiC) SIROCCO (1979, CNRS, Air@ 3b, 845°C, Metal Alloy) Fluidized Bed (1980, CNRS) Ceramic Fins (1982, AiResearch, Air@ 3b, 1177°C, SiC)

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

21


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Pressurized Air Solar Receiver • • • •

Ceramic Dome (1978, MIT, Air@ 4b, 980°C, SiC) SIROCCO (1979, CNRS, Air@ 3b, 845°C, Metal Alloy) Fluidized Bed (1980, CNRS) Ceramic Fins (1982, AiResearch, Air@ 3b, 1177°C, SiC)

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

21


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Pressurized Air Solar Receiver • • • •

Ceramic Dome (1978, MIT, Air@ 4b, 980°C, SiC) SIROCCO (1979, CNRS, Air@ 3b, 845°C, Metal Alloy) Fluidized Bed (1980, CNRS) Ceramic Fins (1982, AiResearch, Air@ 3b, 1177°C, SiC)

Alveolar Module

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

21


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Pressurized Air Solar Receiver • • • •

Ceramic Dome (1978, MIT, Air@ 4b, 980°C, SiC) SIROCCO (1979, CNRS, Air@ 3b, 845°C, Metal Alloy) Fluidized Bed (1980, CNRS) Ceramic Fins (1982, AiResearch, Air@ 3b, 1177°C, SiC)

Alveolar Module

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

21


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Pressurized Air Solar Receiver • SOLGATE (1999‐2002, DLR, Air@ 15b, 960°C, Refos SiC) • DIAPR (1998, WIS, Air@ 20b, 1200°C, Porcupine SiC) • Solhyco (2008, DLR CEA …, Air @ 800°C, Profiled Multi-Layer tube)

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

22


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Pressurized Air Solar Receiver • SOLGATE (1999‐2002, DLR, Air@ 15b, 960°C, Refos SiC) • DIAPR (1998, WIS, Air@ 20b, 1200°C, Porcupine SiC) • Solhyco (2008, DLR CEA …, Air @ 800°C, Profiled Multi-Layer tube)

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

22


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Pressurized Air Solar Receiver • SOLGATE (1999‐2002, DLR, Air@ 15b, 960°C, Refos SiC) • DIAPR (1998, WIS, Air@ 20b, 1200°C, Porcupine SiC) • Solhyco (2008, DLR CEA …, Air @ 800°C, Profiled Multi-Layer tube)

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

22


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Pressurized Air Solar Receiver • SOLGATE (1999‐2002, DLR, Air@ 15b, 960°C, Refos SiC) • DIAPR (1998, WIS, Air@ 20b, 1200°C, Porcupine SiC) • Solhyco (2008, DLR CEA …, Air @ 800°C, Profiled Multi-Layer tube)

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

22


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

CRS : Air at 1 atm Jülich solar tower power plant (Germany) 1,5 MWe Technology : air @ P =1 atm , Tair = 700°C Rankine Cycle (Superheated Steam @ 485°C and 27 bar) Ambiant Air

External Receiver with Modular Volumetric Absorber SOLAIR Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

23


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Surface or Volumetric Receiver ? • Absorbing Surface – Advantages No Pressurized Window Cheaper, Simpler to Operate – Limitations Wall Temperature Tf outlet < 800°C

• Volumetric Receiver – Advantages Volumetric Effect Tf outlet ~ 1000°C – Limitations Fragile Quartz Window More Expensive

Need to improve both technologies

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

24


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Tests of Ceramics Foams (SiC) Parabola

Heliostat Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

25


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Modelling of Ceramic Foams • Modelling at the Pore Level Fluid Dynamics

Radiative Transfer

Rolland et al, Rad 10 – Antalya (2010)

Wu et al, App. Energy (2010) ; Wu et al, IJHMT (2011)

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

26


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Modelling of Ceramic Foams • Modelling of the Equivalent Porous Medium --> Outlet Air

Inlet Air -->

Symmetry axis Mesh : 64x64 ; Y : [0, 0.025m] ; X: [0, 0.05m] Porosity 0.7, Cell size 2.23mm, Total hemi. Reflectivity 0.08 MFR : 0.004 kg/s ; Wall emissivity 0.3 ; ka=186m-1 ; kd=218m-1 Collimated incident solar flux (gaussian distrib.)

Nov. 11th 2010 C. Caliot, G. Flamant

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

27


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Conclusion and Future Work Central Receiver System Advantages

Limitations

• High Flux Concentration (200-1000) → High Temperature (>450°C) → High Cycle Efficiency • Compact Receiver → Less Thermal Losses

• Investment • Limited Power < 500 MWth

Future Research : Combined Cycle Volumetric Pressurized Air Receiver • Increase Thermal Efficiency : with high solar flux and temperatures, more compact designs and smaller receivers can be developped

Nov. 11th 2010 C. Caliot, G. Flamant

Storage • High Temperature Storage

Testing • Volumetric Receiver

« Towards the Future of CSP » Israel‐France Conference on Renewable Energy

28


Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France

Thank you for your attention

Nov. 11th 2010 C. Caliot, G. Flamant

PROMES, April 2010 « Towards the Future of CSP » Israel‐France Conference on Renewable Energy

29


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.