Infill Philadelphia: SOAK IT UP! Exhibition

Page 1

Over 40 designs for revitalizing urban neighborhoods through green stormwater infrastructure PHILADELPHIA CENTER FOR ARCHITECTURE OCTOBER 2012 Presented by:



Infill Philadelphia: Soak It Up! EXHIBITION

Infill Philadelphia: Soak It Up! is a design initiative created by the Philadelphia Water Department, U.S. Environmental Protection Agency, and Community Design Collaborative to advance the next generation of green stormwater infrastructure tools and to explore how green stormwater infrastructure can revitalize neighborhoods and cities. Infill Philadelphia: Soak It Up! will continue through 2013 with a series of programs and events, including a national design competition. To launch Infill Philadelphia: Soak It Up!, the partners hosted an exhibition at the Philadelphia Center for Architecture in October 2012. The exhibition featured over 40 green stormwater infrastructure projects from Philadelphia and other U.S. cities, including Baltimore, Detroit, Cleveland, and Pittsburgh. This booklet is a compilation of the projects on display and illustrates an impressive spectrum of what’s happening right now in this dynamic field. Green stormwater infrastructure tools are designed to capture stormwater—rain or melting snow—runoff close to where it lands on hard surfaces in cities and help it soak into the ground or slowly enter the sewer system. In the City of Philadelphia, this ensures that polluted water does not end up in creeks and rivers—the source of our drinking water. Examples of green stormwater infrastructure tools include rain gardens, green roofs and stormwater tree trenches. On a citywide scale and through city-wide partnerships, green stormwater infrastructure will not only help improve water quality but also improve quality of life, enhance recreational opportunities, and create more vibrant neighborhoods and business districts. In 2011, the City of Philadelphia became a national leader for its innovative approach to cleaning up the City’s streams and rivers. Green City, Clean Waters details how we can improve the health of Philadelphia’s creeks and rivers over the next 25 years and beyond, primarily through green stormwater infrastructure investments on an incremental, block-by-block scale. By capturing stormwater runoff through green tools, we can keep excess water out of our underground sewer pipes to ensure that polluted water does not end up in our waterways. Green City, Clean Waters aims to serve as a potential model for cities across the country. The projects in this booklet are only the beginning of a partnership that is sure to inspire the design and development of green stormwater infrastructure in Philadelphia and other cities.


Infill Philadelphia: Soak It Up! EXHIBITION LIST 1 Andropogon Associates, Ltd.

Shoemaker Green: A Sustainable Campus Commons Philadelphia, PA

1

2

2 BAU Architecture

Grove Park House Community Arts and Education Center: Eco Amphitheater and Stormwater Management Study Roslyn, PA

3 Biohabitats, Inc.

3

Wissahickon Creek Park: Sand Seepage Wetland Stormwater Best Management Practice Philadelphia, PA

4

4 Birdsall Services Group

Sepviva Street: Concrete Infiltration Unit Philadelphia, PA

5 CEDARVILLE Engineering Group, LLC

5

6

Green Demolition Specifications: Preserving the Potential in Vacant Lands for Green Infrastructure Cleveland, OH

6 CEDARVILLE Engineering Group, LLC

Rediscovering Urban Soils: Vacant Lots, Soils, and the Sustainable Management of Stormwater Cleveland, OH; Cincinnati, OH; Omaha, NE

7 Charles Loomis Chariss McAfee Architects

7

8

9

MOVING PARK Š: A Pop-up Park Concept Philadelphia , PA

8 Detroit Collaborative Design Center

Bloody Run Creek Greenway Redevelopment Project Detroit, MI

9 Erdy McHenry Architecture, LLC/ Roofmeadow

The Radian: Green Roof for a Mixed-Use Development Philadelphia, PA

10

10 Gilmore & Associates

Kensington Creative and Performing Arts High School: Green Infrastructure and Landscape Improvements Philadelphia, PA

11 JASTECH Development Services, Inc.

11

12

13

Overbrook Environmental Education Center: Green Infrastructure and Landscape Improvements Philadelphia, PA

12 JFS Engineering, PC

Raised Bed Rain Garden Metuchen, New Jerseyn

13 Johnston Stromberg Architecture

Carpenter Square: A Mixed-Use Infill Development Philadelphia, PA


EXHIBITION LIST 14 KSK Architects Planners Historians, Inc.

Ingersoll Commons: New Affordable Housing and Public Park Philadelphia, PA

14

15

15 & 16 LIMN Architects

Cafe Olam: Adaptive Reuse to Engage the Community and the Environment Philadelphia, PA

17 LRSLA Studio

Hawthorne Park: A Sustainable Public Park Philadelphia, PA

17

18

18 Meliora Environmental Design LLC

ACME Market: Heat Island and Stormwater Management Improvements Wilmington, DE

19 Meliora Environmental Design LLC

Schenley Park: Panther Hollow Watershed Restoration Pittsburgh, PA

19

20

21

20 Meliora Environmental Design LLC

Van Sciver Elementary School: Saddler’s Woods Rain Garden Haddonfield, NJ

21 Michael Baker Corporation

Gustine Lake Interchange Improvement Project Philadelphia, PA

22

23

22 New Kensington CDC

Big Green Block: Comprehensive Green Infrastructure Improvements Philadelphia, PA

23 OLIN

Patch/Work Philadelphia: Sustainable Design in an Existing Urban Framework Philadelphia, PA

24

24 ParadoXcity

Jones Falls Baltimore: Whose Right of Way? Baltimore, MD

25 Pennoni Associates, Inc.

25

26

27

Navy Yard Corporate Center: Green Infrastructure and Landscape Improvements Philadelphia, PA

26 Pennsylvania Horticultural Society

Independence Charter School: Rain Garden Philadelphia, PA

27 Roofmeadow

SHARE Rooftop Farm Philadelphia, PA


Infill Philadelphia: Soak It Up! EXHIBITION LIST 28 SALT Design Studio Linwood Park Ardmore, PA

28

29

30

29 SALT Design Studio

Streetscape Improvements for 63rd Street Philadelphia, PA

30 Shepherd Studio

Reveille House: Bioretention Structures Richmond, VA

31

31 SMP Architects

32

Germantown Friends School: Sustainable Urban Science Center Philadelphia, PA

32 SMP Architects

North Third Street Housing and Stormwater Study Philadelphia, PA

33 Stacy Levy

33

34

Springside School: Rain Wall and Garden Philadelphia, PA

34 Studio Bryan Hanes

Master Plan for Penn Treaty Park Philadelphia, PA

35 ThinkGreen LLC

35

Briar Bush Nature Center Entry Renovation Abington, PA

36

36 UJMN Architects + Designers

Friends Center: Green Roof and Rainwater Collection Philadelphia, PA

37 Urban Engineers, Inc.

37

38

39

Stenton Station Roundabout Philadelphia, PA

38 URS Corporation

Middle Blue River Green Solutions Pilot Project Kansas City, MO

39 Viridian Landscape Studio

Allegheny Riverfront Vision Plan Pittsburgh, PA

40

41

40 Viridian Landscape Studio

East Liberty Presbyterian Church: A Multi-Function Town Square Pittsburgh, PA

41 Viridian Landscape Studio

Greenfield Elementary School: A Sustainable and Living Laboratory Schoolyard Philadelphia PA


PARTNERS


PILOT PROJECT FOR THE SUSTAINABLE SITES INITIATIVE

UNIVERSITY OF PENNSYLVANIA - SHOEMAKER GREEN RAIN GARDEN WITH NATIVE PLANT COMMUNITY SURFACE CONDITION

CONVEYANCE

OUTDOOR CAFE SPACE

SMITH WALK EXTENSION

AERIAL VIEW

STORMWATER SYSTEMS

7

20,000 GALLON CISTERN BEING LOWERED INTO PLACE 5

3

WATER FROM TRENCH DRAIN ENTERING RAINGARDEN

WEIR WALL STONES BEING SET

WEIR WALL

4

1

SmartDrain SYSTEM

2 6

3

1. CISTERN 2. RAIN GARDEN 3. TREE TRENCH SYSTEM 4. SUBSURFACE STORAGE AREA

5. SmartDrain SYSTEM 6. STORM SEWER 7. BUILDING CONDENSATE FROM HVAC SYSTEMS

BASE EXCAVATION

1

DESIGNED SOILS FOR WATER QUALITY IMPROVEMENTS

SUBSURFACE STORAGE AREA

SITE TOUR WITH PHILADELPHIA WATER DEPARTMENT


ECO AMPHITHEATER EXISTING SITE Bequeathed to Abington Township, the historic Grove Park House is located along the Sandy Run Creek between the main thoroughfare of Willow Grove, Easton Road, and Grove Park. BAU Architecture worked with the Township to envision the incorporation of the house and its property elegantly into the existing township park.

PERSPECTIVE

1

GROVE PARK HOUSE

2

16 The initial goal was to carve out a public space for community and cultural events while also generating a destination to increase pedestrian access and traffic to the nearby main business district. The existing historic house was converted into a community arts and education center which can utilize the new eco amphitheater in its programming along with the public and other arts organizations. Between the community center and amphitheater lie a series of healing gardens and a vegetated labyrinth designed to offer the public a place to unwind and reflect on the natural beauty found within the park.

6

8 5

11

4 8

7

10

15

8 14

12

3 4

6

9

4

1. GROVE PARK HOUSE: COMMUNITY ARTS AND EDUCATION CENTER 2. GRAVEL PARKING LOT 3. GROVE PARK DOG RUN 4. BIOSWALE 5. PEDESTRIAN PROMENADE AND GREEN BUFFER 6. RAINWATER GARDENS 7. LABYRINTH GARDENS 8. LAWN: FARMERS MARKET AND FESTIVAL/EVENT SPACE 9. STEPPED GRASS AMPHITHEATER 10. STAGE AND RAIN WATER CISTERN 11. STAGE SCREEN AND TRAILHEAD WITH TRAIL INFORMATION 12. INTERPRETIVE TRAIL 13. SANDY RUN CREEK 14. ADA ACCESSIBILITY 15. POTENTIAL SEASONAL ICE RINK 16. EASTON ROAD

14

7 12 5 9

6

4

9

10

13

A variety of site improvements were designed to maximize accessibility and usability of the grounds. Street calming strategies were employed along bustling Easton Road using stormwater gardens and flow through planters to increase pedestrian safety.

SITE PLAN GOALS MANAGE STORMWATER create a public space ecosystem 5 manage run-off through sensitive solutions that enrich the community RAINWATER GARDENS 6 provide logical answers to landscaping water needs by collecting and storing rain water RAINWATER CISTERN 10 ACCESS ECOLOGY integrate the community into the park - raise community awareness, concern, and appreciation for the creek environment through sustainable education and ecological demonstration 12 INTERPRETIVE TRAIL 11 provide educational opportunities for school children and adults alike ADA ACCESSIBILITY 14 create accessible route through the park by removing limiting barriers RESTORE ECOSYSTEM new sculptural treatment of the park will prevent harmful run-off to Sandy Run Creek10 nearby dog park run-off will be mitigated BIOSWALE 4 native plants and restored banks will prevent erosion and encourage wildlife REVITALIZE URBAN CORRIDOR use street calming principles to provide safe pedestrian access encouraging pedestrian access to the commercial corridor 5 GREEN BUFFER public events and activities will generate traffic and commerce to nearby businesses LAWN 8 ENGAGE COMMUNITY 1 multi-functional public space encourages community cohesion through year-round activities STEPPED GRASS AMPHITHEATER 9 in winter, base of amphitheater doubles as an ice rink 15 STAGE 10 in summer, can host concerts, community theater performances and movie showings 8 space for farmers market, health and wellness activities, community center programs and festival grounds 14 all members of public can participate

The main grounds were carved into a gradually sloping eco amphitheater for community performances while the stage doubles as a rain water retention cistern to prevent run-off from entering the Sandy Run waterway and provide landscaping water during dry seasons. The area around the stage will serve as a gateway to the park and a new interpretive trail planned along the creek where interactive exhibits will educate the public on the importance of stormwater management and the natural creek ecosystem. This new porous, ADA compliant interpretive trail makes the existing township park accessible to all members of the public. The introduction of bioswales at the edge of the parking lot and along the perimeter of the dog park work to reduce incidental pollution from reaching Sandy Run Creek.

PROCESS ABINGTON TOWNSHIP 1176 OLD YORK ROAD; ABINGTON, PENNSYLVANIA 19001 267.536.1000 WWW.ABINGTON.ORG

BAU ARCHITECTURE LLC 7913 PARK AVENUE; ELKINS PARK, PENNSYLVANIA 19027 215.782.2228 WWW.BAUARCHITECTURE.COM

2


Cross Section–Wissahickon Sand Seepage Wetland Stormwater BMP (nts)

Wissahickon Valley Watershed Association Sand Seepage Wetland Stormwater BMP

sand/wood mix (80:20)

ephemeral stormwater

Wissahickon Creek

T

his project consists of a woodland trail placed overtop of a gravity sewer paralleling the Wissahickon Creek. The trail was in poor condition due to stormwater discharge from an approximately 30-acre drainage area which was also eroding a channel between the receiving stream and the pipe outfall. The approach used to solve these problems and improve stormwater quality and quantity was an innovate ecological engineering technique called a ‘sand seepage wetland.’ This approach involved • covering the trail with a 3-foot deep layer of coarse sand amended with 20% (by volume) shredded hardwood, • building a boulder and cobble riffle grade control across the eroding channel that delivers the stormwater to the Wissahickon Creek, and • planting the side slopes of the sand seepage bed in native plants. The boulder and cobble riffle grade control restricts discharge to the Wissahickon during peak runoff periods, storing the water behind the sand seepage trail, which increases the water

surface area and enhances existing wetland water quality treatment and quantity attenuation. The mechanism for the water quality treatment is filtration through the carbon-rich sand filter media (sand trail with 20% shredded hardwood) as well as enhancement of natural wetland and floodplain treatment through runoff detention. As the peak discharge passes, water stored behind the sand berm and the boulder and cobble riffle grade control is able to find its way into the receiving stream over a period of 24 to 72 hours. The sand berm presents a firmer and cleaner substrate for hikers.

Typical Trail Seepage Berm Cross Section (nts)

Plan View–Wissahickon Sand Seepage Wetland Stormwater BMP

Typical Weir Profile (nts)

outfall

Legend sand seepage feature trail over existing sewer right of way bridge existing sewer alignment water surface for 72 hours after precipitation (light, medium and heavy rainfall) stream riffle grade control in outfall channel N

The hydrology of the wetland floodplain forest is improved, with supplemental benefits to the plant community, including suppression of non-native invasive species. The positive environmental stewardship effect of this project on the surrounding suburban community cannot be overstated. Similar projects that have been studied resulted in an order of magnitude reduction in peak discharge, and reductions of total suspended sediment, total nitrogen, and total phosphorus.

N

N

Trail with bridge before restoration

Eroding outfall channel before restoration

Immediately after construction with one inch of rainfall

Path with bridge in distance one year after construction

Project Details • Drainage area to BMP is approximately 30 acres • Riffle grade control sized for conveyance of the 10-year storm discharge (approximately 65 CFS) • Sized to provide quality treatment for a 1.5-inch precipitation event • Maximum storage volume is the 25-year storm discharge • Designed and permitted in 2010, constructed in January and February 2011 • Design and construction cost: $79,000 (approximately three dollars per square foot)

3

outfall

base map ©2010 Google

drainage area served by sand seepage wetland stormwater BMP

Bob Adams Director of Stewardship Wissahickon Valley Watershed Association 12 Morris Road Ambler, PA 19002 215.646.8866 info@wvwa.org

Joe Berg Biohabitats, Inc. 2081 Clipper Park Road Baltimore, MD 21211 410.554.0156 jberg@biohabitats.com

Sharon Yates A.D. Marble & Company 375 East Elm Street, Suite 101 Conshohocken, PA 19428 484.533.2500 syates@admarble.com

© Biohabitats, Inc.


Birdsall Services Group worked closely with Philadelphia Water Department personnel to design and develop a prototype infiltration unit associated with a water and sewer project on Sepviva Street. The actual unit was designed to provide collection of stormwater along the curb edge at points associated with tree pits, thereby providing, collection, storage and infiltration. Birdsall worked with the prefabrication manufacturer and the contractor to develop and install the units as a trial. The units were intended to be used in sequence with other storage systems such as trenches, and help to promote healthy tree growth by directing stormwater to the root growth areas.

Contacts:

Designer Gerald DeFelicis, RLA & Engineer Anthony LaRosa, PE

4


Abstract One often overlooked area in urban redevelopment is the role of demolition. One of the first steps in urban renewal projects for blighted neighborhoods is to demolish abandoned properties. However, there is very little information known about the existing soil conditions prior to demolition, the practice of the demolition itself, and then the subsequent backfilling of soil into the former building envelope. In many instances, the resulting vacant lot sits for a period of years and acts as a sort of unmanaged Green Infrastructure (GI) until redevelopment commences. In coordination with the US EPA Office of Research and Development National Risk Management Research Laboratory (ORD-NRMRL), USEPA Region 5, and the Cuyahoga County Land Reutilization Corporation (CCLRC), prototyped Green Demolition specifications that would improve the outcome of demolition with a vacant lot that could be used many different purposes, including redevelopment. Detailed soil investigations were conducted on five lots in the city of Cleveland, Ohio pre- and post-demolition to determine their soil properties and how soils were to the process of demolition, and better understand the sources and nature of backfill soils

The issues at hand In many of our major cities, populations have been steadily declining since the 1950’s. One result of population decline and the foreclosure crisis is a glut of abandoned homes throughout Cleveland OH. These abandoned homes were both an eyesore and also a place where criminal activities were occurring. The City of Cleveland and Cuyahoga County Land Reutilization Corporation created a set of processes to clear the disposition of vacant homes, schedule demolition, and ensure that the vacant lot is properly stabilized. However, if the demolition is not carried out properly, much debris and poor soil cover render the vacant lot as just another piece of impervious surface. We examine the demolition process to see how these activities can be guided by new expectations (i.e., green demolition specifications) carried out to yield vacant lots that can be used for stormwater management, redevelopment, pocket parks, among other productive land uses.

Materials and Methods • Demolition activities for five abandoned homes within one neighborhood were observed. • Soil physical and chemical properties were measured pre demolition . • Homes were completely demolished and all debris was removed from the property. • Backfilling activities were observed; soil analysis of the backfill materials was conducted.

B

Overview

Right: In the new paradigm, all debris must be removed prior to any backfilling activities.

5 www.cedarvilleeng.com

A. Soil pit adjacent to a demolished residence. The native soil were formed from aeolian sand deposits and is both extremely coarse in texture and rapid in permeability. The native soil has enormous capacity to serve as Green Infrastructure in attenuating stormwater runoff.

B. Actual backfill material that the contractor has imported to the site. This material consists of lacustrine silts and clays (in addition to construction debris) and has a very low permeability. By using this type of backfill material, the capacity for stormwater to reach the native sandy soils is severely impeded, reducing its potential as Green Infrastructure.

Above: The physical act of demolition impacts both the target and adjacent lots.

CEDARVILLE Engineering Group 1218 Kimberton Road, PO Box 72 Chester Springs, PA 19425 610-827-9200

What Not to Do!!!

Clockwise from Upper Left: The basement foundation must be completely removed prior to backfilling; the subgrade soils are graded level; then subgrade soil is scarified prior to the placement of appropriate topsoil; the topsoil is next spread in such a manner so that the machinery will not re-compact the surface.

This investigation covered two areas; the quantification of the soil conditions prior to demolition and the process of filling in the former foundation with imported fill material and topsoil. We found a high degree of variability in the actual process of demolition, as well as a wide range of soil materials that were brought in as fill. Additionally, there are methods of placing both fill material and topsoil which would be more mindful of compaction and create a better environment for the establishment of turfgrass and/or Risk landscaped vegetation National Management Research for these properties. Laboratory We believe that it is possible to create a “Green Demolition” protocol that Sustainable Division creates GI forTechnology every newly demolished lot. lot Sustainable Environments Branch

www.cedarvilleeng.com


We recommend that prior to any type of Green Infrastructure being considered, a thorough assessm ent of the soi ls and landscape must first be conducted . Historically, the level of baseline information for urban soils is primi ti ve, i f any i nfo rmati on is available at all. In addition to the dearth of soils data, a typical geotechnical investigation is focused only on vi abi li ty for soil stabi li ty vis-à-vis building construction, and are thereby deficient in both the scale and detail of informati on requi red to make responsible planning decisions for Green Infrastructure (GI) proj ects. We developed an urban soil assessment protocol to guide detailed soil investigatio ns on vacant lots and city -owned parks in Cleveland, Cincinnati OH, and Omaha NE to determine soil and landscape suitability for GI. This investigation encompassed the physical and chemi cal characteri zati on of soil properties as it relates to mitigating impacts from a Combined Sewer System . This figure (above) uses GPR data to show the boundary between anthropogenic (fill) soils and the native soils, which were Pleistocene-Age dune deposits (break at 50 cm or 20 inches). At a time when post-industrial US cities struggle to mitigate combined sewer overflows (CSO) as a part of long-term control plans negotiated or settled under a Clean Water Act (CWA 1972) consent decree, these same cities are also rapidly accumulating vacant properties due to legacy blight, and unprecedented foreclosure on residential, commercial, and industrial properties. These properties find their way into the inventory of city-run land banks where the disposition of vacant land can be stabilized, the title cleared, demolition and site closure can be carried out, at which point properties await repurposing. Since there is a concomitant need for detention of stormwater runoff and an availability of land mass, this arrangement suggests opportunities for this land to be used as a sink for excess stormwater runoff, urban agriculture, green space, expansion of city parks, among other uses that foster social-equity, economic stabilization, and environmental quality in traditionally underserved locations.

• Soil Investigations with a Geoprobe to depths of 12-16 feet. Core samples were then inspected in the field to locate the transition fill and native soils, soil diagnostic horizons or layers by visual cues (change in color, texture, location of a clear impeding layer, etc.). • Permeability measurements of both the surface and subsurface soil layers. • Geophysical analysis utilizing both Ground Penetrating Radar (GPR) and Electromagnetic Induction (EM).

IS ALL URBAN LAND THE SAME? The soil profiles listed below are all mapped as Urban Land in the USDA-NRCS Soil Survey

The figure above shows subsoil hydraulic conductivity (a limiting factor for infiltration performance) values for native sub-areas at each sampled location. Hydraulic conductivity test depths ranged from 60 to 180 cm (2 to 6 ft).

Above: The soil investigation team and our community outreach.

While these urban soils are quite variable compared to a natural setting, trends can be found that will allow for the creation of an accurate urban soils map. This information is of critical importance for the end user, in this case City Planners and Engineers, who are accountable to taxpayers and regulatory agencies for successful management of municipal issues such as stormwater and CSO management.

Right: The interface between the combined sewer system and potential green infrastructure

There are stark differences between what has been traditionally (and minimally ) done with Soil Taxonomy and Soil Survey work in an urban setting. Furthermore, the level of information required for adequate land use planning is also beyond the capabilities of a traditional geotechnical investigation. In contemporary urban land management, it is critical to know the depth of fill material, the nature of the fill material, and the underlying native soil.

CEDARVILLE Engineering Group, 1218 Kimberton Road, PO Box 72 Chester Springs, PA 19425 610-827-9200

www.cedarvilleeng.com

These soil profiles exhibit a typical range of soils found during this investigation. The photo on the left illustrates the contact between the fill material from both the house construction and subsequent demolition, and glaciofluvial parent material. The middle photo shows the contact with aeolian dune sand deposits and the photo on the right illustrates a residual parent material. These transitions are all present between 1 and 2 meters (3-6 ft).

We suggest a set of methods and experiences as a protocol for urban soil survey and hydraulic assessment work. It is our hope that this work will stimulate dialogue between the soil scientist and the land use planners and National Risk Management Research designers. Carrying out an effort such as this takes an Laboratory interdisciplinary team to fully understand the various connections amongst soils, stormwater,, and human Sustainable Technology Division impacts on managed ecosystems.

Sustainable Environments Branch

6

www.cedarvilleeng.com


MOVINGPHILADELPHIA PARK

©

100 OPPORTUNITIES A Philadelphia neighborhood-based moving park appears in one residential street, lingers for a day or two before disappearing to another, and leaves you wishing for its return. Was it real? Can imagination and education encourage the emergence of green stormwater infrastructure in older, ultra-urban environments? Understanding how the surface expression of these technologies impacts and possibly transforms a neighborhood is also critical to its acceptance. As a continuously temporary quarter-acre park, MOVING PARK delights residents and enables them to momentarily inhabit and actually see the potential of urban greening and inspired place-making. “Its greatest strength is that it physically expresses potential.” Project team: Chariss McAfee, Charles Loomis, Caitlin Martin

IMAGES COURTESY OF GOOGLE STREET VIEW

7


8


THE RADIAN

University of Pennsylvania | 3925 Walnut Street, Philadelphia PA

Erdy McHenry Architecture | Roofmeadow

The Radian is situated within the view of a McDonalds, a few upscale restaurants, a wide greenspace, and a cluster of high-rise student housing complexes. It is built with contested space in mind: it neither belongs to the medley of retail spaces that mark West Philadelphia nor to the flat academic buildings that are signature of University City. It gracefully blurs the line between these two frictional landscapes, while simultaneously upgrading the language of both.

2

3

The project is a unique example of using green roofs to receive and treat runoff from adjacent rooftop areas. Four green roof areas, totaling 12,200 square feet manage runoff from 28,600 square feet, absorbing more than a quarter million gallons and preventing it from entering the City’s sewer system. Impervious roof and pavement areas drain onto adjacent green roofs. The green roofs, ranging in thickness from 4 to 6 inches, are designed to efficiently percolate the received runoff and slow its progress as it flows through granular soil toward the roof drains. This maximizes moisture uptake by soil and plants and runoff rate and volume are substantially reduced. On two of the roofs manifolds and/or stone channels are used to transition the runoff from adjacent roof areas. None of the green roof areas have permanent irrigation. Since being installed in 2008, the green roofs have functioned as designed, without water erosion or upsets resulting from excessive moisture. All of the roofs have developed dense ground covers of Sedum, supplemented in some instances by planters with colorful perennials. In two areas, planters are used to intercept, slow, and filter runoff.

UP

DN

1

The Radian is a student apartment community in University City. The residential mass of the structure, elevated over the base, allows for daylight and striking neighborhood views to penetrate the windows of the Radian. The angular massing, named after the ratio between the length of an arc and its radius, enables the afternoon sun to reach the narrow street to the north. The building features both a green roof and a prefabricated rain screen facade.

PE-1

PE-2

SE-3 DN

UP

DN

The deployment of green areas to intercept stormwater runoff is believed to delay the runoff peak by about 50 minutes reducing contribution to flow rates in the receiving storm sewer.

UP

TYPICAL FLOOR PLAN

The project also includes two underground stormwater detention facilities that intercept runoff from other impervious surfaces. The design garnered a Stormwater Best Management Practices Award from the Philadelphia Water Department in 2007.

4

5

6

The roof visible from the restaurant peaks in June with multiple Sedum species and Dianthus blooming in pinks and yellow. In the fall as the weather cools, the green roof areas display rich reds, oranges, and yellows. The green roof by the restaurant is punctuated with planters which provide a shock of bright color. Other green roof planters show interest throughout the growing season with species like Allium and Delosperma blooming in the spring, Geranium and Dianthus blooming throughout the summer, and the purple Asters showing their stuff in the fall. As the plant communities mature the media becomes increasingly bioactive and the green roof areas are able to evolve into biodiverse ecosystems. With the passage of time the green roof areas become more efficient at managing stormwater.

PE-1

PE-2

SE-3 02-04

PE-4

RESTAURANT

UP

DN

01

8

9

South Facade Residential Lobby Upper Dining Terrace Street Level Dining/Retail Lower Dining Terrace Aerial View West Terrace Floor Green Roof Residential Entry Stairs Walnut Street Retail Terrace Floor Green Roof

Tributary Roof (Impervious) Tributary Roof (Impervious) Green RoofRoof (Pervious) Green (Pervious) Stormwater Path Flow Stormwater Path Flow

TERRACE FLOOR PLAN

09

GREEN ROOF DETAIL

RESTAURANT

RETAIL

Sedum Ground Cover Growth Media Separation Fabric Drainage Media Protection Layer Root Barrier Primary Membrane Rigid Insulation Roof Deck

01 02 03 04 05 06 07 08 09

UP

7 1 2 3 4 5 6 7 8 9 10

PE-1

PE-2

SE-3

PE-4

BUILDING SECTION

This green roof manages stormwater from the surrounding pavement and serves as an amenity for the adjacent restaurant. Diners sitting at tables directly next to the green roof enjoy cooler temperatures than they otherwise would and the visual appeal of the lush green carpet. The 4,200 sf green roof manages water from an additional 3,400 sf.

9

GROUND FLOOR PLAN

Sedum spurium ‘Summer Glory’

Sedum album ‘Coral Carpet’

Sedum Takesimensis

Dianthus Carthusianorum

Sedum Floriferum

A thirsty and sturdy roof cover whose dark pink flowers appear late in the summer season off of tender green shoots. Roots extend 4” deep making this an excellent plant for thin compliance green roofs. Spurium is easily established from cuttings.

A roof cover workhorse Sedum that provides excellent coverage and stormwater absorption. In the spring the foliage emerges like little green beads and presents white flowers in the summer. In the fall the foliage turns a brilliant red.

The distinct serrated edges of the foliage help with identification of this slow growing, mounding succulent. Bright yellow flowers emerge in August. A roof cover plant that is will remain evergreen throughout a mild Philadelphia winter.

Native to Europe, occurring in dry, grassy habitats often in the mountains. In the spring when the blooms shoot skyward, this perennial is a radiant show stopper at the Radian.

Canary yellow blooms emerge from an emerald green ground cover make this roof sing in the late spring. A tough plant that can tolerate periods of desication even in direct sunlight. Pinch piece from the plant, distribute the cuttings and watch new plants root and grow.

10

AERIAL VIEW EAST In combination, the Radian green roofs, comprised largely of drought tolerant succulent plants, manage approximately 250,000 gallons of stormwater per year and through evapotranspiration, the vegetation helps to cool the rooftop temperature. These benefits, among others, help to offset the effects of urbanization. This is one of the few sites in Philadelphia, where green roofs are visible to pedestrians and patrons of a private business and, serve as both an amenity and as a stormwater management device.

VIEW WEST ON WALNUT STREET Located on the 3900 block of Walnut Street, the Radian is a student housing-complex composed of 150 plus apartments, 500 beds and 40,000 square feet of retail space. A retail plinth along Walnut Street is made up of a series of storefronts that intentionally resurrect the street’s former silhouette by playfully undulating the vertical scale. Above it rises the residential tower, sharing space with Penn’s other high-rises just a few block away.


10


11


A Case for Merging Stormwater Management and Agriculture in

Project Location: Metuchen, New Jersey

the Urban Environment

Photo and Detail Credits: Joe Schaffer, PE

Project Client: Schaffer Residence

Rain is a gift and a renewable resource, not a nuisance. Perhaps this has been a fundamental flaw in modern urban infrastructure design practice. Typical Urban BMP Implementation Constraints Constraint 

Roofs and hardscape cover a large portion of

Effect 

Urban Areas. 

Unchecked peak storm water flows from Impervious surfaces.

Anthropogenic Soils tend to be poorly

draining due to compaction and composition.

Most BMPs are unsuitable for an urban environment because they rely on positive drainage through infiltration.

Urban Infrastructure exhibits extreme

inertia—a resistance to change from legacy. 

Limited “yard space” in Urban Areas reduces

tary, physical, and cultural are enormous. 

number of candidate sites for Surface BMPs. 

Limited space devoted to people, cars, and

Traditional BMP maintenance is echewed by

Rain barrels are a great start but mostly undersized for all but the smallest storms.

Urban BMPs are typically buried tanks, ~5 to 10 times the cost compared to surface BMPs.

the public; responsibility = culpability. 

Implementation often limited to existing parks or urban renewal (eminent domain).

buildings, BMPs rip the fabric of the street. 

Cost to implement new technologies; mone-

BMPs in danger of disrepair; malfunctions and dumping can cause localized flooding.

Constant draining necessary to achieve desired attenuation of small storm runoff.

Conclusion: Adapt Stormwater BMPs for multiple functionality. Example: Collect and concentrate rainwater to support a water intensive activity—local food production. 

Practiced since ancient times, gardening is a classic part of the Urban Vernacular

Harvested rainwater preferred over “city” water due to chlorine residual

Focusing harvested rainwater for irrigation reduces stress on City water system

Reduced Food Miles and better utilization of Land and Leisure Time

Community Gardens are proven to strengthen neighborhoods, an oasis in a food desert

Incremental reduction in peak runoff as individual systems are brought online

The proposed stormwater management structure is intended to provide groundwater recharge, peak flow attenuation, and urban agricultural use for piped roof runoff. Stormwater runoff is introduced into a structure similar to a rain garden, however, instead of native plants in a pit, a raised bed food production garden is installed. The balance of the garden area is covered with ordinary turf grass. The structure will also function with a buried liner typical of most rain gardens (or without in heavy clay soils), or on a concrete pad with proper re-enforcement of the perimeter berm. This structure can be used to direct overflow to a stable outlet condition. It is important to note that as a point of stormwater concentration, an overflow must be included in the installation. In addition, monitoring after rain events is crucial for the health of many garden plants, which are minimally tolerant to extended flood conditions. For example, excessive watering can cause splitting in tomatoes. By introducing stormwater runoff into a discharge point adjacent to the plantings, the water will be treated within the soil matrix; this is as opposed to rain barrels that do not offer this treatment. In addition, the deliberate concentration of stormwater will cause a localized groundwater mounding effect, which will reduce the need for irrigation. As a structure sized for the anticipated Water Quality Storm, it will have a greater capacity to attenuate runoff from these storms. The project is “accessible” to the average gardener for cost, skill set, and tooling. A perimeter sod berm is constructed utilizing existing turf stripped from the future raised bed footprints. This berm is raised to accommodate a design storm from the contributing roof (s), creating supplemental runoff attenuation as well as a “key” for rodent fencing.

As urban areas densify, land cost increases. Buildings and structures are adapted for multiple functions as a result. Stormwater Best Management Practice (BMP) design has not yet caught up to this adaptation.

Construction method used for this project:

 Survey the potential site to ensure good gravity drainage from the downspouts to the discharge point.  Plan the proposed garden area. Compute the storage volume required for the design storm and the resulting berm height needed.  Install liner system, if desired. Presence of a heavy clay soil may make a liner unnecessary.  Set up a level line around the perimeter of the proposed garden area.  Strip lawn sod into oblong “bricks” and lay upside to form the perimeter berm. Select one of the following options:

 Dig out the infiltration trench and perform a percolation test, target drain time is 72 hours; or

 Install extended downspout to drain directly into the turf garden paths, stabilize outlet with gravel as needed (preferred method).

 Install planting beds and high water overflow. Clean downspout and discharge as necessary.

Perimeter sod wall under construction with yellow level string

The site during installation, it is possible to build a BMP by hand

InFill Philadelphia SoakItUp Exhibition 2012

Turf grass recovers quickly and armors the berm

Pepper plants thrive with little watering

12


A NEW MIXED-USE DEVELOPMENT AT S 17TH AND CARPENTER STREETS, PHILADELPHIA, PA

CARPENTER SQUARE PROJECT DETAILS Project Type: Mixed-Use Development Project Site: Previously Developed [currently vacant] Site Area: 17,772 SF Green Roofs: 9,855 SF Permeable Paving: 6,438 SF New Trees to be Planted: 16 - 20 Sedums to be Planted: 10,000+

GREEN STORMWATER INFRASTRUCTURE

Green Roofs (all buildings)

The site for the proposed Carpenter Square development is currently a vacant lot owned by the Philadelphia Redevelopment Authority (PRA). For the last 10+ years the site has remained one of the largest underutilized parcels in the Southwest Center City neighborhood. The PRA awarded the project to Carpenter Square, LP through a competitive RFP process in late 2011. The development team’s proposal differentiated itself by focusing on modern design that integrates sustainable design strategies and a program that includes a mix of housing, commercial, and public open space.

Flow-Through Planters (plaza downspouts)

Carpenter Square includes 11 townhomes, 6 condos, corner commercial, and a public plaza. The project integrates features such as passive ventilation, a high-performance building envelope, low flow plumbing fixtures, high-efficiency energy management systems, and Energy Star lighting and appliances. To manage stormwater runoff, the project incorporates over 9,800 SF of green roofs, several flow-through planters, over 6,400 SF of permeable paving, and numerous stormwater planters. A majority of new vegetation will consist of native, non-irrigated, drought-tolerant plants. In addition to LEED for Homes certification, the team is seeking certification for the entire project through the LEED for Neighborhood Development program. With its modern design, mixed-use amenities, and extensive green features, Carpenter Square is poised as a model for future sustainable redevelopment in Philadelphia.

Stormwater Planters (along sidewalks)

Permeable Concrete Pavers (plaza & drive aisle)

16,585 SF= AREA MANAGED BY GREEN STORMWATER INFRASTRUCTURE PROJECT TEAM

13

The Goldenberg Group • Johnston Stromberg Architecture, Inc. • KS Engineers, P.C. • Elise Geyelin, RLA

• MR Scott Development, LLC •

Michelle Ashley, Prudential Fox & Roach, REALTORS • E&M Engineering • Larsen & Landis • MaGrann Associates • SOLIBS, LLC • Conspectus


Co-Developers: Community Ventures, Philadelphia Parks & Recreation & Philadelphia Water Department Architect: KSK Architects Planners Historians, Inc. Stormwater Management Design: Stantec Park Design: Philadelphia Department of Public Property

Ingersoll Park

Ingersoll Park is the result of a unique 3-way public/private partnership between a private non-profit developer, (Community Ventures), Philadelphia Department of Parks and Recreation, and the Philadelphia Water Department. The development integrates a new major public open space, management of offsite stormwater, and new affordable sales homes, to revitalize a deteriorated urban neighborhood. The project will result in: > Redevelopment of a full-block vacant site in Lower North Philadelphia that will be a catalyst for neighborhood investment. > A new .64-acre Philadelphia Department of Parks and Recreation public park in an area lacking public open space. > Incorporation into the park of a Philadelphia Water Department stormwater management rain garden that will absorb runoff from 2 acres of surrounding public streets and support PWD’s “Green City, Clean Waters” program > For-sale affordable housing facing the park that provides “eyes and ears” on the park. The site at 16th and Master Street was acquired by the City in 1968. Originally planned for open space, the parcel remained vacant for over 40 years. The Philadelphia “Green 2015” plan identified Lower North Philadelphia as an area undeserved by public parks. Community Ventures saw the opportunity for a landmark development that would provide much needed public open space, address PWD’s public right-of-way stormwater management goals, and create a focal point and amenity for a new residential development facing the park. The new park and rain garden faces 16th Street, while the 10 new townhouses, accessed by a permeable paved driveway provide an attractive backdrop for the open space, as well as security for the park. Cost of the park and rain garden is $1m. Construction cost for the residential development is $2.6 m. Construction will begin spring 2013.

14


Designing on principals of regeneration and urban renewal, Cafe Olam’s operations will benefit from mutually catalytic relationships with the community, enterprises and organizations comprising the surrounding neighborhoods. - Benjamin Walmer, Principal, LiMN Architects

Cafe Olam Cafe Olam

Info-Graphic Description of the culture spectrum: Using the actual geographic locations of venues surrounding the site, a weighted geometric form is generated. The angle of each segment shows its respective venues’ direction. The arc width of the segment grows with 1) increased frequency and 2) increased proximity of a particular type of venue. The arc depth is adjusted to emphasize certain types of venues.

state

Like many of the other studies, the Jewish Population Survey of

Greater Philadelphia found that the "under 40" subset is

te

create community in nontraditional settings. They are spending

Labs

community. This same demographic, however, does find and

New P aradis e

our Pla Clean Y

experiencing a decrease in connection to the Jewish

Ath

o

ash

tB

ec roj

P

ena

Gib

son

time, money, and social capital in bars, restaurants, coffee shops,

Co

mm un

ity

shows, events, and educational & civically oriented programs.

Ed

bal

uca

Glo

tio

B

city

n

o buti

stri

Di eer

pennsylvania

n

Philadelphia Fringe Festival

Of this demographic, the vast majority are not committed

Jinxe

engage and retain this demographic in Jewish life, we need to

Silk City

reorient our points of communal gathering to reflect these ongoing demographic shifts. Cafe Olam is the answer, and your support in building this community is necessary.

15

www.limnarchitects.com

m

ila

Ph

a

oc

ound

340 S

to significant Jewish identity. If the Jewish community seeks to

De vn uts

d Gun ner

’s R un B

rew er y

philadelphia neighborhood

Food Food & Beer

Community

Live Art

Educational

Art Galleries

Religious

northeast philly


Floor Plan

Roof Plan 01 10

05 06

09

07

10

08 04

09

02

05

03

06

06 07 08 09 10

Stage Microbrewery Bar Event Space Conference Room (above)

08

02

07

01

01 Pervious Paving 02 Elevator to Rooftop 03 Vertical Agriculture (above) 04 Outdoor CafĂŠ 05 Community Bread Oven

03

04

01 Vertical Agriculture 02 Living Wall 03 Beer garden 04 Rooftop Farm 05 Bar

06 07 08 09 10

Photovoltaic Panels Hops Trellis Elevator to Rooftop Green Houses Compost Program

16


17


ENVIRONMENTAL AND ECONOMIC REVITALIZATION AT TROLLEY SQUARE, WILMINGTON, DE SITE CONTEXT:

DESIGN:

In collaboration with the Delaware Center for Horticulture and the City of Wilmington Office of Economic Development, Meliora Design transformed an existing ACME supermarket parking lot in Trolley Square into a green space that reduces urban heat island effects, helps to revitalize the community, and manages stormwater to reduce discharges to the city’s combined sewer system. In addition to ACME Markets, Inc., the project also received funding through the New Castle Conservation District and the Urban Heat Island Grant from the US Forest Service.

Underutilized impervious areas in parking lots provide an excellent opportunity for stormwater management. If feasible, these retrofits can improve water quality, reduce the volume of water leaving the site, provide educational benefits, and improve upon the aesthetics of the large impervious area. Using green stormwater infrastructure techniques that utilize soils, vegetation, and infiltration for stormwater management, the design includes a series of bioswales, bioretention, and a tree trench with a subsurface storage bed that provides a multifaceted system to manage runoff the parking lot. The removal of pavement and the planting of trees also provide site greening and shading, which help to mitigate urban heat island effects. The design maximizes the runoff volume capture of smaller storms at the site and provides a comprehensive demonstration of urban stormwater techniques.

Wilmington

The project was constructed in the summer of 2010 and includes a large bioretention area in the parking lot adjacent to Delaware Avenue, a vegetated bioswale in the center of the parking lot, and a small bioswale that leads to a larger subsurface infiltration tree trench along North DuPont Street. Approximately 31,000 square feet of parking lot, or 0.7 acres, are managed by these systems. During very large storm events, overflow from these systems are directed to the existing sewer. Because of these quantifiable improvements, the City of Wilmington has granted ACME a reduction in their stormwater fee.

Delaware

GREEN STATISTICS

BENEFITS:

4,000 SF

GREEN SPACE CREATED

11

NEW TREES

322

NEW SHRUBS

Meliora Design, LLC

SITE PLAN:

ENVIRONMENTAL:

S

S

PHOTO: DELAWARE HORTICULTURAL SOCIETY

· Manages between 0.7 INCHES and 2.0 INCHES of runoff from nearly 1.6 ACRES of impervious surfaces · Captures over 1 MILLION gallons of stormwater runoff per year · Urban habitat formed with native grasses, shrubs, and trees · Urban heat island reduction

S

ACME

S

COMMUNITY: BIOSWALE CAPTURES RUNOFF FROM PARKING AREA AND PROVIDES GREENING AND SHADING TREE TRENCH #1 CAPTURES RUNOFF FROM PARKING LOT AND PROVIDES SHADE

N. Dupont St.

· Economic revitalization of an important urban supermarket, providing healthy food sources within walking distance of several neighborhoods · Generates outdoor educational opportunities with signage · Enhances neighborhood aesthetics · Increases awareness of stormwater management

LOT AND ENHANCES LAND-

S

18


Restoring the Panther Hollow Watershed with Green Infrastructure Pennsylvania

Pittsburgh

Carnegie Mellon

Oakland

SITE CONTEXT:

DESIGN + SITE PLAN:

The Pittsburgh Parks Conservancy (PPC) has embarked on a visionary effort to restore the hydrologic and ecological health of the Panther Hollow Watershed, located within Schenley Park and the neighborhoods of Oakland and Squirrel Hill. Characterized by a human lake at the lower end of an urbanized watershed, the tributary streams that feed the watershed and lake have been “beheaded”, buried, and diverted to the combined sewer system, in addition to the watershed’s upper drainage area. Such impacts have led to a significant loss of groundwater recharge and baseflow, causing the upper reaches of the streams to be dry, eroded channels, and the Lake water quality to suffer. At the same time, the stream channels suffer from flashy, excessive flows during rain events which have led to their continued erosion with much sediment finding its way into Panther Hollow Lake.

In 2010, Meliora Design led a multi-firm team in the preparation of a restoration plan to restore the natural hydrologic regime of the Panther Hollow watershed through the implementation of green infrastructure. After identifying and prioritizing GI interventions, two pilot projects were selected in the upper reaches of the watershed to manage runoff where it is generated. The pilot projects, designed by Meliora, Andropogon and Cosmos Technologies are awaiting construction in 2013. Beacon Street GI Retrofit The design along Beacon Street converts an eroded and compacted lawn hillside into a stormwater feature that manages runoff from the right-of-way, creates valuable habitat through the establishment of a native meadow, enhances connectivity between the Park and Squirrel Hill neighborhood, and improves park aesthetics. New inlets convey road runoff into two infiltration trenches where it then percolates into the existing soils. During large storm events, the runoff overflows to level spreaders that evenly disperse the excess stormwater onto the meadow. New Tree Inlets Piped Flow Infiltration Bed No-Mow Turf Native Wildflower Meadow

Squirrel Hill

Schenley Park

Meliora Design, LLC

GREEN STATISTICS:

BENEFITS:

4.6 AC

GREEN SPACE ENHANCED

35

NEW TREES

395

NEW SHRUBS + PLANTS

Greening the Greens at the First Tee of Pittsburgh The First Tee of Pittsburgh is a golf course located at the top of the Panther Hollow watershed. To mitigate runoff generated by the compacted lawn, modest infiltration berms were designed along the contours to impede the flow of runoff and allow it to infiltrate along the hillside. During heavy storms, the runoff will safely overflow to existing drainage features (inlets and swales) without causing unintended erosion. Located within the existing rough, the retentive grading and enhanced landscape provides stormwater benefit, while causing little interference to the players.

New Tree Existing Tree Runoff Flow Infiltration Berm No-Mow Turf Existing rough

ENVIRONMENTAL:

The GI designs strive to increase infiltration, enhance baseflow, and reduce erosive, “flashy” conditions to improve the health of the streams and lake (as shown above), as well as transform areas of traditional lawn into habitat-rich landscapes. VOLUME VOLUME CAPTURED AREA MANAGED CAPTURED PER YEAR (AC) IMPERVIOUS PERVIOUS (IN) (GAL) BEACON STREET

1.0

260,000

0.3

Engaging the 1.0* Community 130,000

GOLF COURSE

SKINNY SCHENLEY**

1.0

* +/** Based on concept design

2.7

LANDSCAPE NEW ENHANCED TREES (AC) PLANTED 3.7

27

9.1

0.9

8

-

TBD

TBD

2.6 May MILLION 23, Schenley 3.6 Plaza Tent Discuss your favorite water, people, and land places

Skinny Schenley Drive The PPC is enthusiastically pursuing funding to “skinny” a portion of Schenley Drive that meanders through the Park. A vegetated buffer and porous pavement recreational path, underlain by a subsurface infiltration bed, fits within the current cartway and shoulders to manage runoff generated by the remaining road and existing sidewalks. Where infiltration is not feasible in the lower portions of the watershed, the stormwater bed will slow the movement of runoff for slowrelease of treated water to the Phipps Run tributary. A skinny Schenley Drive will alleviate erosive streambank conditions caused by large impervious surfaces, and ameliorate flooding conditions on Carnegie Mellon’s campus. The new street design will also accommodate its multiple users and safely connect pedestrians and bicyclists to Squirrel Hill and Oakland, as well as the Park itself.

COMMUNITY: June 30, Community Hike

Existing

Review the potential demonstration project locations and give us your feedback

PHOTOS PROVIDED BY ROTHSCHILD DOYNO COLLABORATIVE

Led by Rothschild Doyno Collaborative, the Meliora Team, in collaboration with the PPC, engaged community stakeholders and residents during the green infrastructure planning process to ensure the plan reflects their needs and overall vision for the Park. Particularly, the designs: • Improve connectivity of the Park to adjacent neighborhoods • Enhance park and neighborhood aesthetics • Generate outdoor educational opportunities • Increase awareness of “wild” landscapes • Provide traffic calming and improves pedestrian safety in a high-traffic area (Skinny Schenley)

19

Proposed

Road width = 40’

8’ Shoulder

12’ 12’ Driving Lanes

Road width = 26’

8’ Shoulder Runoff

2’

11’

Shoulder Driving Lane

11’ Driving Lane

2’

4’

10’

Shoulder Vegetated Porous Pavement Buffer Path

*Not to Scale


VAN SCIVER ELEMENTARY SCHOOL RAIN GARDENS AT SADDLER’S WOODS SITE CONTEXT:

DESIGN:

For several years, the Delaware Riverkeeper Network has led an effort to mitigate the impacts of stormwater runoff on erosion and stream health in Saddler’s Woods, a 25-acre preserved woodland located in the very dense urban-suburban area of Haddonfield, NJ. As a part of this larger goal, Meliora Design and Jonathan Alderson Landscape Architects provided a stormwater management design at the Van Sciver Elementary School to alleviate drainage problems that led to flooding, freezing, and unsafe walking conditions on the pavement and sidewalks in the main drop-off area.

The stormwater management design conveys stormwater runoff away from the parking lot and drop-off loop in front of the school, through two trench drains, onto attractive stone splash blocks, and into a series of vegetated swales and rain gardens. This series of berms and gentle landscape depressions slow and disperse water allowing it to absorb into the modified onsite soils and recharge groundwater through infiltration. The soils and native vegetation both filter runoff to improve water quality.

Haddon Township New Jersey

The two rain gardens in front of the school building were designed with a continuous slope to ensure there would not be standing water in front of or around the school for any significant length of time, while the two rain gardens behind the school are intended to pond up to 6-inches of water before overflowing to the adjacent woodlands through a level spreader. In between the rain gardens, berms with large stone blocks allow access to the system for education and maintenance, while also slowing the velocity of water moving through the system. The planting palette included all native plants that are salt-tolerant due to the nature of the contributing drainage area and that are able to survive in variable moisture conditions. The design team worked closely with the Delaware Riverkeeper Network and the School Board to make this system as safe and low-maintenance as possible, while providing an attractive, functional amenity.

GREEN STATISTICS

BENEFITS:

7,000 SF

DENSELY VEGETATED GREEN SPACE CREATED

27

NEW TREES

47

NEW SHRUBS

SITE PLAN:

ENVIRONMENTAL:

Meliora Design, LLC

Overflow Rain Garden Education Trail Vegetated Swale Rain Garden

PHOTO: DELAWARE RIVERKEEPER NETWORK

· · · ·

Valuable habitat formed with native grasses, shrubs, and trees and simple modifications to the landscape Manages the first 1-inch of runoff from nearly 32,000 square feet of impervious surfaces Captures 440,000 gallons of stormwater runoff per year Reduces erosion and improves stream health of tributaries in Saddler’s Woods

Vegetated Swale

COMMUNITY:

Van Sciver Elementary School

Trench Drains

Meadow

PHOTO: DELAWARE RIVERKEEPER NETWORK

· · · · ·

Improves pedestrian safety in a high-traffic area Generates outdoor educational opportunities Enhances neighborhood aesthetics Increases awareness of “wild” landscapes Volunteer planting promotes a sense of stewardship

PHOTO: DELAWARE RIVERKEEPER NETWORK

Rendering by: Jonathan Alderson Landscape Architects

20


21


the big green block

14 13

15

1 2 3 4 5

Art/Gateway* New Sidewalk and Curb Blair Street Sidewalk Extension New Parking Area Sheets into Basins Stormwater Education Murals

In 2008, NKCDC, and the Pennsylvania Horticultural Society (PHS) met with the Mayor’s Office of Sustainability to identify a 20 acre site in Fishtown/ Kensington as a location to highlight sustainable infrastructure and education. The Big Green Block (BGB) represents the application of innovative green infrastructure improvements to a new LEED Platinum high school, an existing recreation center, and the public spaces in and around these two areas. This project acts as a gateway to comprehensive community revitalization: connecting fractured communities, increasing engagement, leadership and social capital, leveraging community assets, history and culture, and tying into city and regional strategies. This site furthered these goals by increasing part-

6 7 8 9 10

Vegetated Infiltration Gardens Educational Signage* New Pathway Access to EL Station Improved Sports Field Stormwater Tree Trenches

nerships, establishing new resources, and expanding reach to new residents and communities. Education and partnership has been critical to the implementation and success of these infrastructure improvements. Each partner brings expertise, resources, and a creative approach to addressing the needs of the site. The Pennsylvania Horticultural Society, the Philadelphia Water Department, Philadelphia Department of Parks and Recreation, Mural Arts Program and NKCDC worked to develop a master plan for the block identifying more than 16 locations and $2,000,000 in green infrastructure actions.

11 12 13 14 15

New Trees Improved Spray Park* Under-Court Stormwater Retention* Tot Playing Field* Dog Park*

Site improvements include infiltration gardens, stormwater tree trenches, water education murals, new play areas and greening. The site manages approximately 90% of its total stormwater. Phase II is expected to capture another 5%. Over the past 3 years, more than $46 million in green infrastructure improvements have been completed through the various partners. NKCDC's Sustainable 19125 program, the Mural Arts Program's interpretive murals, PWD's Green Ambassador program, Kensington CAPA's Green Team, and PHS all provide educational programming and awareness around the site which contribute to the community's understanding, protection, maintenance, and valuing of these public spaces.

partners-supporters-thanks

Pennsylvania Horticultural Society, Mural Arts Program, Department of Parks and Recreation, Mayor’s Office of Sustainability, Department of Environmental Protection, Philadelphia School District, Philadelphia Water Department, Fishtown Athletic Club, William Penn Foundation, Kensington CAPA High School

22


23


24


Navy Yard Corporate Center Infrastructure Project Philadelphia, PA

BEFORE CONSTRUCTION As part of the redevelopment of the Philadelphia Navy Yard into an urban corporate center, Pennoni was responsible for the design of one mile of public infrastructure to support 1.5M SF of private development. The infrastructure design incorporated one mile of green stormwater infrastructure into a new roadway network. The project to redevelop the former brownfield was jointly funded by the Philadelphia Water Department and Liberty Property Trust. When the U.S. Navy substantially closed the Navy Yard, ownership was transferred to the Philadelphia Industrial Development Corporation (PIDC). Liberty Property Trust served as the agent for PIDC in the brownfield redevelopment. The infrastructure project includes the design and construction of one mile of new roads and several miles of new utility infrastructure. The roads were designed as “Green Streets” in accordance with the sustainability goals of the master plan. The design incorporated two different green stormwater details based on the street type defined in the master plan: stormwater planters and tree trenches. The landscape design was developed to blend the green stormwater components with the adjacent site development. Utilities (water, storm, sanitary, telephone/data, electric, gas) were located to facilitate the installation of green stormwater infrastructure.

DURING CONSTRUCTION

Jeremy Colello, PE, ENV PV jcolello@pennoni.com Pennoni Associates Inc. 215-222-3000 www.pennoni.com

25


26


27


28


29


30


1

2

3

ENERGY 1

Daylighting and Natural Ventilation

2

Geoexchange Wells with Distributed Mechanical Systems

3

Photovoltaic Arrays

4

5

6

MATERIALS 4

Rapidly Renewable and Recycled Content Interior Finishes

5

Polished Structural Concrete Floors

6

Zinc and Fiber Cement Rainscreen Systems

7

8

9

STORMWATER

SUSTAINABLE URBAN SCIENCE CENTER GERMANTOWN FRIENDS SCHOOL

7

Cisterns for Rainwater Reuse

8

Multilevel Green Roofs

9

Courtyard Raingarden Landscape

The new Sustainable Urban Science Center at Germantown Friends School provides state-of-the-art labs for chemistry, biology and physics plus independent study areas, shared faculty offices, and an exterior courtyard classroom. Germantown Friends School, a Quaker School located in a densely urban neighborhood of Philadelphia, expanded its upper school facilities to meet the needs of its growing science program. SMP Architects focused the design of the new center on “learning laboratory” didactic opportunities, embracing the School’s organizational mission of lifelong learning and stewardship of the natural environment. Throughout the facility, sustainability strategies are celebrated as visible, interactive experiences for students, advancing the future of sustainability through conversation and exploration, while inspiring the science researchers and leaders of tomorrow.

RECYCLING

CHEM PREP

DUMPSTER CHEMISTRY LAB

CHEMISTRY LAB

PHYSICS LAB GREEN ROOF CLASSROOM

EXISTING BUILDING

EXISTING BUILDING

UPPER GALLERY

PHYSICS PREP

PHYSICS LAB

8’

16’

SECOND FLOOR PLAN N

0

RECYCLING

BIO PREP

DUMPSTER BIOLOGY LAB

BIOLOGY LAB

MECH. GEOEXCHANGE FIELD

LOBBY

INDEPENDENT STUDY

EXISTING BUILDING

EXISTING BUILDING FACULTY OFFICE OUTDOOR CLASSROOM

MTG ROOM

8’

RESOURCE ROOMS

16’

FIRST FLOOR PLAN N

0

31

Photo Credit: Barry Halkin Photography


THE URBAN MEADOW

North Third Street is unique. A mostly residential corridor with active neighborhood groups, a successful community development corporation, and a potential appetite for additional housing, the corridor lacks public and private green space, and a buffer from adjacent industrial uses. The relative proximity of North Third Street to Temple University and several modes of public transportation make it a potential site for a variety of housing development - mixed income owner-occupied developments and rental housing units may be viable along the corridor and in the

CENTRAL PARK

adjacent neighborhood. The

Pennsylvania

Horticultural

Society

identified a synergy in the potential for new housing construction in this area and the Philadelphia Water Department’s desire to establish development models that innovatively comply with current stormwater regulations. Environmentally responsible “green” methods of managing stormwater could be a source of inspiration and even funding for a proposed North Third Street greenway and nearby development. Neighborhood open spaces, sidewalks, streets, and houses should be built so that they manage stormwater on site, potentially redirecting money that would otherwise be spent on underground infrastructure. The site for the study produced by SMP Architects, with Meliora Environmental Design, is bounded by Berks, Third, Norris, and Fourth Streets in North Philadelphia. Although the project does repsond to specific site conditions, it should be considered a

THE COMMONS

model, or better, a set of suggested concepts, for housing and open space development in an urban environment. Our proposals for this site are intended to imagine new urban development possibilities that consider stormwater management strategies as generative concepts. We envision housing, water, and open space working together.

NORTH THIRD STREET HOUSING AND STORMWATER STUDY

32


33


A

PENN TREATY PARK MASTER PLAN

A

A

A

Penn Treaty Park occupies the site where William Penn and the Lenni Lenape tribes forged a treaty in 1682 promising peaceful coexistence between their peoples. As a historically significant site, it has suffered from relative obscurity. In its current context the park is at the center of a growing movement to revitalize the Central Delaware Riverfront, and bring this territory back into the public realm as a recreational, economic and ecological amenity.

PLAN ELEMENTS A

A. Rain Gardens on Street B. Penn Treaty Sculpture C. Treaty Ground Obelisk D. William Penn Sculpture E. Glass Canopy F. Water Feature G. Cafe H. Promenade I. The Big Lawn J. Children’s Play Area K. Picnic Grove L. Seatwall M. Jetty N. Wetlands O. Pebble Shore P. Cantilevered Pier Q. Boat Dock R. Sculpture S. Bike Path T. Future Bike Path U. Current Shoreline

A

C

D G

E

W

J

Located within the 100-year flood plain, the site’s 6-foot tidal fluctuation could foster a unique habitat were it not for the concrete bulkheads and stone rip-rap constricting the river’s edge. Additionally, the site is located near two CSO outfall pipes that compromise the delicate riparian ecosystem. The Interstate 95 overpass and several lanes of traffic on Delaware Avenue make public access difficult. The proposed master plan restores 3 acres of tidal and non-tidal riparian wetlands and the riparian edge, improving river function, quality, and flood plain storage capacity. The design is carbon-neutral and requires zero municipal water use. Maximization of pervious surfaces, usage of native plant species, water reuse for restrooms and water features, composting toilets, and on-site renewable energy generation help meet these goals. The park not only infiltrates rainwater that falls within the site boundaries but it also intercepts stormwater runoff from approximately 30 acres of adjacent impervious surface. Integral to the success of the design are new walking paths, bike lanes, and increased public transit, all of which improve public access to the new park.

H

B F I

T K

S R

V U

L N

S

N

N

M

O

Q

L

S

L P 0’ 5’ 10’

T

20’

40’

Note: All shaded back areas are outside the project limit.

The programmed spaces of the park revolve at the edges of the property around the central open space. Each of these edges suggests distinct programmatic possibilities. In turn, each provides opportunities for different plant-

VIEW AT PIER: The pier reaches out into the river, providing the widest prospect of the river and the Ben Franklin Bridge. With ample and varied seating, and a lawn terrace, it is an inviting perch from which to enjoy the views. The terminus is cantilevered to minimize the impacts to the existing shoreline.

ing, materials, ground surfaces, and lighting techniques.

PENN TREATY PARK

JANUARY 2010 │

SHERWOOD DESIGN ENGINEEERS

1 2

3

JzTI

Sidewalk planters absorb the first flush of stormwater from adjacent streets

STUDIO│BRYAN HANES

4

Stormwater Cells also absorb the first flush of stormwater from streets.

The Trays absorb stormwater overflow from the streetside and tidal flux from the riverside.

Tidal wetlands create shallow water habitat at the river’s edge.

SECTIONS THROUGH SOFT EDGE OF SITE: The shoreline is reconfigured to allow the tidal flow of the Delaware River to reach up into the park; reconnecting the floodplain to the river, improving the ecological value of the riparian zone, and creating valuable tidal wetland habitat.

walk 1

walk 2

walk 3

WALKS THROUGH EXISTING PARK

walk 4

eastern cottonwood_populus deltoides

sweet bay magnolia_magnolia viginiana

sycamore_platanus occidentalis

american beech_fagus grandifolia

sweetgum_liquidambar styracifolia

silky dogwood_cornus amomum

marsh st. johns wort_triadenum virginicum

lawn

royal fern_osmunda regalis

black walnut_juglans nigra

river birch_betula nigra

fetterbush_leucothoe racemosa

lawn

northern arrowwood_viburnum recognitum

sweet pepperbush_clethra alnifolia

green ash_fraxinus pensylvanica

hemlock parsley_ conioselinum chinense

lawn

river bulrush_schoenoplectus fluviatilis

swamp dogwood_cornus racemosa

annual wild rice_zizania aquatica

burreed_sparganium augustifolium

smartweed_polygonum pensylvanicum

three square bulrush_schoenoplectus pungens

arrow arum_peltandra arifolium

spatterdock_nuphar polysepala

tapertip rush_juncus acuminatus

three way sedge_dulichium arundinaceum

softstemmed bulrush_schoenoplectus tabernaemontani

sweetflag_ acorus calamus

walk 1

walk 5

walk 2

walk 3

walk 4

WATER FLOW

STORMWATER FLOW

OVERFLOW

walk 5

WALKS THROUGH PROPOSED PARK

VIEW OF FOUNTIAN AND GLASS CANOPY: The photovoltaic-outfitted glass canopy provides a flexible space for both casual and spontaneous

VIEW AT PEBBLE BEACH: Nestled within the wetlands, a small gravel beach would allow for toe-dipping, rock skipping and kayak launching. There was strong community support for a place to launch small, human-powered water craft.

VIEW AT BIKE PATH: At the heart of the park is a generous path and seat-wall. Serving as both a connector and a destination, the seatwall path borders the lawn, and offers opportunities to people-watch, rest from activities, and enjoy the view.

VIEW AT STREET: This urban threshold is meant to be transporting while also feeling immensely accessible from all sides. Each of the planted cells receives stormwater runoff from the adjacent street, and showcases an abstracted and distilled native plant palette.

activity, café seating, and large-scale events and festivals. The interactive fountain engages children while also providing a sound barrier from I-95 and adjacent Delaware Avenue.

SURFACE CATALOGUE The existing park reveals little variation in material and vegetation. A walk through the proposed park exposes the viewer to a diverse plant and material palette that emphasizes the various SURFACE CATALOGUE potential roles that water plays on the site. existing

Level A_floodplain forest_periodic flooding

Level B_sedge flats_ephemeral wetland

Level C_waterlily mat_emergent wetland

Moving inland, wetland plants take on a more formal arrangement. A framework for an aesthetically driven massing of plants, the Trays highlight the colors/textures of different species, while receiving the river’s highest tides and stormwater overflow from the street.

34


35


Friends Center

L eading the way towards cleaner water and a greener c it y

Two key objectives governed the project: eliminate fossil fuel consumption and greenhouse gas emissions, and reduce water usage and stormwater runoff. OVERVIEW OF PROJECT

The Friends Center renovation evolved from a modest capital improvements project into a Quaker witness for environmental sustainability. The project entailed the restoration of the historic 1856-Meetinghouse and renovation of a four-story 1975-office building, which occupy a dense 1.26-acre urban site in center city Philadelphia. Through considerable stakeholder involvement and education, two key objectives emerged as guiding principles for the project—eliminate fossil fuel consumption and greenhouse gas emissions, and reduce water usage and stormwater runoff. RISING TO A CIT YWIDE CHALLENGE PAUL S. BARTHOLOMEW PHOTOGRAPHY, INC.

Prior to the project’s implementation, Friends Center discharged 58,400,000 gallons of untreated stormwater runoff into the Schuylkill River on an annual basis, contributing to a citywide problem of Combined Sewage Overflow (CSO). Through the renovation, 42% of the site was made permeable, greatly reducing stormwater runoff.

PRACTICAL STRATEGIES An initial green planning charrette, funded by the Kresge Foundation, identified several potential stormwater management strategies, including a rain garden in the rear courtyard, a vegetated roof, tree trenches along the site to replenish the local aquifer through infiltration, and a constructed wetland and living machine to provide natural on-site sewage and wastewater treatment. Strategies ultimately implemented include the green roof, tree pits and a rain water collection and reuse system. The rain garden was dismissed since it would have disrupted the original layout of the historic site. The constructed wetland and living machine were not implemented as the priority of the project became focused on reducing water usage and runoff.

RAIN WATER COLLEC TION AND REUSE SYSTEM

GREEN ROOF A 9,327-SF vegetated roof was installed atop a new ENERGY STAR® roof on the Office Building. The green roof retains 90% of stormwater runoff and purifies the remaining 10% not absorbed by vegetation or soil. The vegetation comprises eight varieties of Sedum that require weeding twice a year.

Rain water is collected from the roof of the Meetinghouse and stored in six 660-gallon cisterns in the basement of the Meetinghouse, harvesting an estimated 20,000 gallons of stormwater per month. The reclaimed water is filtered and purified, then recycled in the Office Building’s toilets. This system significantly reduces Friends Center’s potable water usage, also equating to a substantial reduction in water bills.

The renovated Office Building achieved LEED Platinum, scoring the highest number of points at the time of completion for a LEED project in Pennsylvania.

PARTNERS Client: Friends Center Corporation

Energy Modeling: 7 Group

Architect & Team Lead: UJMN Architects + Designers

Vegetated Roof Design: Roofscapes, Inc.

Sustainable Design Consultant: Consilience, LLC

Stormwater Consulting: Meliora Environmental Design

Mechanical / Electrical Engineer: AKF Engineers

Construction Manager: Clemens Construction Company, Inc.

Structural Engineer: Keast & Hood Company

Green Charrette Facilitation: Re:Vision Architecture

36


37


Kansas City’s Green Solutions Pilot Project Reducing Sewer Overflows, Rebuilding a Neighborhood

Engineering Kansas City, MO is using green infrastructure to reduce Combined Sewer Overflows in a 100-acre urban neighborhood. This innovative pilot project is reducing stormwater flows to the sewers while also helping renew a neighborhood.

Ecology The project includes more than 150 rain gardens, bioretention gardens, cascades, curb extension planters, below grade storage systems and permeable sidewalks. The project also planted new street trees. These green solutions help restore ecological function to the urban landscape while creating sustainable stormwater management solutions.

Creativity Public involvement was integrated into the design process. As a result of community input, stormwater improvements were blended with neighborhood enhancements to rebuild streets and sidewalks, slow traffic and create attractive landscaping.

Rain garden and porous concrete sidewalk.

Green Solutions

www.urscorp.com

David.Dods@urs.com

38


39


40


41


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.