Wastewater treatment in seafood indus. / Otpadne vode u indus. obrade ribe i morskih plodova

Page 30

58

Tay et al.

22 g/m2 have also been applied successfully [2]. A resting period between applications is important to ensure survival of the aerobic bacteria. The spray field is usually laid out in sections such that resting periods of 4– 10 days can be achieved.

2.6.2

Potential Problems in Land Application with Seafood-Processing Wastewater

Two potential problems may be encountered with land application of seafood-processing wastewaters: the presence of disease-producing bacteria and unfavorable sodium absorption ratios of the soil. A key to minimizing the risk of spreading disease-producing bacteria can be accomplished by using low-pressure wastewater distribution systems to reduce the aerosol drift of the water spray. With respect to unfavorable sodium absorption ratios associated with the soil type, the seafood processor should be aware that clay-containing soils will cause the most serious sodium absorption problem. Sandy soils do not appear to be affected by unfavorable sodium absorption ratios and seem to be the best suited for accepting the high sodium chloride content found in most meat packing plant wastewaters. As seafood-processing plant wastewaters are applied to land, certain types of grasses have been found to be compatible with these wastewaters. These are Bermuda NK-32, Kentucky-31 Tall Fescue, Jose Wheatgrass, and Blue Panicum [2]. In addition, it was reported that the southwestern coast of the United States, with its arid climate, mild winters, and vast available land areas, presents ideal conditions for land application treatment systems. In some cases, the use of land application systems by today’s seafood processors is feasible. However, in many cases, land disposal of seafood-processing wastes must be ruled out as a treatment alternative. Coastal topographic and soil characteristics, along with high costs of coastal property are the two major factors limiting the use of land application systems for treating seafood-processing wastes.

2.7

GENERAL SEAFOOD-PROCESSING PLANT SCHEMES

Seafood processing involves the capture and preparation of fish, shellfish, marine plants and animals, as well as byproducts such as fish meal and fish oil. The processes used in the seafood industry generally include harvesting, storing, receiving, eviscerating, precooking, picking or cleaning, preserving, and packaging [2]. Figure 2.21 shows a general process flow diagram for seafood processing. It is a summary of the major processes common to most seafood processing operations; however, the actual process will vary depending on the product and the species being processed. There are several sources that produce wastewater, including: . . . . . . . . .

fish storage and transport; fish cleaning; fish freezing and thawing; preparation of brines; equipment sprays; offal transport; cooling water; steam generation; equipment and floor cleaning.

© 2006 by Taylor & Francis Group, LLC


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.